Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(45): 42966-42975, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024708

RESUMEN

Carnosine (CAR), anserine (ANS), homocarnosine (H-CAR), and ophidine (OPH) are histidine-containing dipeptides that show a wide range of therapeutic properties. With their potential physiological effects, these bioactive dipeptides are considered as bioactive food components. However, such dipeptides display low stability due to their rapid degradation by human serum carnosinase 1 (CN1). A dimeric CN1 hydrolyzes such histidine-containing compounds with different degrees of reactivities. A selective CN inhibitor, carnostatine (CARN), was reported to effectively inhibit CN's activity. To date, the binding mechanisms of CAR and ANS have been recently reported, while no clear information about H-CAR, OPH, and CARN binding is available. Thus, in this work, molecular dynamics simulations were employed to elucidate the binding mechanism of H-CAR, OPH, and CARN. Among all, the amine end and imidazole ring are the main players for trapping all of the ligands in a pocket. OPH shows the poorest binding affinity, while CARN displays the tightest binding. Such firm binding is due to the longer amine chain and the additional hydroxyl (-OH) group of CARN. H-CAR and CARN are analogous, but the absence of the -OH moiety in H-CAR significantly enhances its mobility, resulting in the reduction in binding affinity. For OPH which is an ANS analogue, the methylated imidazole ring destroys the OPH-CN1 interaction network at this region, consequentially leading to the poor binding ability. An insight into how CN recognizes and binds its substrates obtained here will be useful for designing an effective strategy to prolong the lifetime of CAR and its analogues after ingestion.

2.
RSC Med Chem ; 13(12): 1587-1604, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36561069

RESUMEN

The synthesis and evaluation of twenty six new phenylurea substituted 2,4-diamino-pyrimidines against Plasmodium falciparum (Pf) 3D7 are reported. Compounds were prepared to improve both anti-malarial activity and selectivity of the series previously reported by our group. Additional properties have been determined to assess their potential as anti-malarial leads including; HepG2 cytotoxicity, solubility, permeability, and lipophilicity, as well as in vitro stability in human and rat microsomes. We also assess their inhibition profile against a diverse set of 10 human kinases. Molecular docking, cheminformatics and bioinformatics analyses were also undertaken. Compounds 40 demonstrated the best anti-malarial activity at Pf 3D7 (0.09 µM), good selectivity with respect to mammalian cytotoxicity (SI = 54) and low microsomal clearance. Quantitative structure activity relationship (QSAR) analyses point to lipophilicity being a key driver of improved anti-malarial activity. The most active compounds in the series suffered from high lipophilicity, poor aqueous solubility and low permeability. The results provide useful information to guide further chemistry iterations.

3.
Bioorg Med Chem ; 46: 116348, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34479064

RESUMEN

Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.


Asunto(s)
Antimaláricos/farmacología , Quimioinformática , Diaminas/farmacología , Inhibidores Enzimáticos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Pirimidinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Diaminas/síntesis química , Diaminas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células Hep G2 , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Fosfotransferasas/metabolismo , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
4.
Org Biomol Chem ; 19(6): 1412-1425, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33501482

RESUMEN

TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Dominio Catalítico , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/química , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Teoría Cuántica
5.
Bioorg Med Chem Lett ; 27(20): 4749-4754, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28927795

RESUMEN

Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4µM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD7.4 (2.9) and the best solubility (∼40µM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin.


Asunto(s)
Aminas/química , Aminas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Sulfonamidas/química , Células A549 , Aminas/síntesis química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/toxicidad , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pirimidinas/química , Solubilidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA