Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029957

RESUMEN

Advanced-stage endometrial cancer patients typically receive a combination of platinum and paclitaxel chemotherapy. However, limited treatment options are available for those with recurrent disease, and there is a need to identify alternative treatment options for the advanced setting. Our goal was to evaluate the pre-clinical efficacy and mechanism of action of Oklahoma Nitrone 007 (OKN-007) alone and in combination with carboplatin and paclitaxel in endometrial cancer. The effect of OKN-007 on the metabolic viability of endometrial cancer cells in both two- and three-dimensional (2D and 3D) cultures, as well as on clonogenic growth, in vitro was assessed. We also evaluated OKN-007 in vivo using an intraperitoneal xenograft model and targeted gene expression profiling to determine the molecular mechanism and gene expression programs altered by OKN-007. Our results showed that endometrial cancer cells were generally sensitive to OKN-007 in both 2D and 3D cultures. OKN-007 displayed a reduction in 3D spheroid and clonogenic growth. Subsequent targeted gene expression profiling revealed that OKN-007 significantly downregulated the immunosuppressive and immunometabolic enzyme indolamine 2,3-dioxygenase 1 (IDO1) (-11.27-fold change) and modulated upstream inflammatory pathways that regulate IDO1 expression (interferon- (IFN-), Jak-STAT, TGF-ß, and NF-kB), downstream IDO1 effector pathways (mTOR and aryl hydrocarbon receptor (AhR)) and altered T-cell co-signaling pathways. OKN-007 treatment reduced IDO1, SULF2, and TGF-ß protein expression in vivo, and inhibited TGF-ß, NF-kB, and AhR- receptor-mediated nuclear signaling in vitro. These findings indicate that OKN-007 surmounts pro-inflammatory, immunosuppressive, and pro-tumorigenic pathways and is a promising approach for the effective treat endometrial cancer. Significance Statement Women with advanced and recurrent endometrial cancer have limited therapeutic options. OKN-007, which has minimal toxicity and is currently being evaluated in early-phase clinical trials for the treatment of cancer, is a potential new strategy for the treatment of endometrial cancer.

3.
J Pharmacol Exp Ther ; 390(1): 53-64, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38580448

RESUMEN

Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer and is associated with high probability of metastasis and poor prognosis. Chemotherapeutics and surgery remain the most common options for TNBC patients; however, chemotherapeutic resistance and relapse of tumors limit the progression free survival and patient life span. This review provides an overview of recent chemotherapeutics that are in clinical trial, and the combination of drugs that are being investigated to overcome the drug resistance and to improve patient survival in different molecular subtypes of TNBCs. Nanotherapeutics have emerged as a promising platform for TNBC treatment and aim to improve the selectivity and solubility of drugs, reduce systemic side effects, and overcome multi-drug resistance. The study explores the role of nanoparticles for TNBC treatment and summarizes the types of nanoparticles that are in clinical trials. Poly(L-lactide-co-glycolide) (PLGA) is the most studied polymeric carrier for drug delivery and for TNBC treatment in research and in clinics. This review is about providing recent advancements in PLGA nanotherapeutic formulations and their application to help treat TNBC. Some background on current chemotherapies and pathway inhibitors is provided so that the readers are aware of what is currently considered for TNBC. Some of the pathway inhibitors may also be of importance for nanotherapeutics development. SIGNIFICANCE STATEMENT: This minireview summarizes the progress on chemotherapeutics and nanoparticle delivery for treatment of TNBC and specifically highlights the lead compounds that are in clinical trials.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Femenino
4.
Geroscience ; 46(5): 4263-4273, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38512579

RESUMEN

Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.


Asunto(s)
Envejecimiento , Debilidad Muscular , Fármacos Neuroprotectores , Sarcopenia , Animales , Masculino , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Fármacos Neuroprotectores/farmacología , Debilidad Muscular/tratamiento farmacológico , Ratones , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Músculo Esquelético/efectos de los fármacos , Ratones Endogámicos C57BL , Unión Neuromuscular/efectos de los fármacos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad
5.
Cells ; 11(9)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563787

RESUMEN

One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.


Asunto(s)
Neoplasias Encefálicas , Exorribonucleasas , Glioblastoma , Animales , Neoplasias Encefálicas/metabolismo , Movimiento Celular/genética , Proliferación Celular , Exorribonucleasas/metabolismo , Glioblastoma/metabolismo , Humanos , Ratones , Procesos Neoplásicos , ARN Mensajero/uso terapéutico
6.
Nanoscale ; 14(12): 4588-4594, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35253815

RESUMEN

Chemotherapy is still regarded as the main modality for cancer treatment. However, it often suppresses the host immune system, resulting in limited therapeutic effects. It is desirable to design a novel chemotherapeutic agent to reduce the level of immunosuppression. Herein, we designed bovine serum albumin (BSA)-bioinspired iron oxide nanoparticles (IONPs) as a nanocarrier to load anticancer drug mitoxantrone (MTX) for enhanced chemotherapy of orthotopic breast cancer. The treatment with IONPs@BSA-MTX complexes increased CD3+CD4+ and CD3+CD8+ T lymphocytes more than free MTX. The complexes effectively restored the host immune system and exhibited a better anticancer efficacy than free MTX. It was worth noting that the BSA-inspired IONPs were a satisfactory contrast agent for magnetic resonance imaging of tumors and lymph nodes. Our work provides a novel strategy for enhanced chemotherapy with low levels of immunosuppression in the treatment of breast cancer and other cancers.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Portadores de Fármacos/química , Femenino , Humanos , Terapia de Inmunosupresión , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas/química , Albúmina Sérica Bovina/química
7.
Brain Sci ; 12(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053843

RESUMEN

Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16-22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®)), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.

8.
Geroscience ; 44(1): 67-81, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984634

RESUMEN

Aging is associated with molecular and functional declines in multiple physiologic systems. We have previously reported age-related changes in spinal cord that included a decline in α-motor neuron numbers, axonal loss, and demyelination associated with increased inflammation and blood-spinal cord barrier (BSCB) permeability. These changes may influence other pathologies associated with aging, in particular loss of muscle mass and function (sarcopenia), which we and others have shown is accompanied by neuromuscular junction disruption and loss of innervation. Interventions to protect and maintain motor neuron viability and function in aging are currently lacking and could have a significant impact on improving healthspan. Here we tested a promising compound, OKN-007, that has known antioxidant, anti-inflammatory and neuroprotective properties, as a potential intervention in age-related changes in the spinal cord. OKN-007 is a low molecular weight disulfonyl derivative of (N-tert Butyl-α-phenylnitrone) (PBN) that can easily cross the blood-brain barrier. We treated middle age (16 month) wild-type male mice with OKN-007 in drinking water at a dose of 150 mg/kg/day until 25 months of age. OKN-007 treatment exerted a number of beneficial effects in the aging spinal cord, including a 35% increase in the number of lumbar α-motor neurons in OKN-treated old mice compared to age-matched controls. Brain spinal cord barrier permeability, which is increased in aging spinal cord, was also blunted by OKN-007 treatment. Age-related changes in microglia proliferation and activation are blunted by OKN-007, while we found no effect on astrocyte proliferation. Transcriptome analysis identified expression changes in a number of genes that are involved in neuronal structure and function and revealed a subset of genes whose changes in response to aging are reversed by OKN-007 treatment. Overall, our findings suggest that OKN-007 exerts neuroprotective and anti-inflammatory effects on the aging spinal cord and support OKN-007 as a potential therapeutic to improve α-motor neuron health.


Asunto(s)
Neuronas Motoras , Médula Espinal , Envejecimiento/fisiología , Animales , Bencenosulfonatos , Iminas , Masculino , Ratones , Neuronas Motoras/metabolismo , Unión Neuromuscular , Médula Espinal/metabolismo
9.
J Cell Mol Med ; 26(2): 570-582, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910361

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti-ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN-007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti-ELTD1 and OKN-007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti-ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti-ELTD1 was also shown to significantly affect other pro-angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti-ELTD1 and OKN treatments did not induce a pro-migratory phenotype within the tumours. Anti-ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti-ELTD1 therapies show promise as potential single-agent multi-focal therapies for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Anticuerpos Monoclonales/uso terapéutico , Bencenosulfonatos/farmacología , Bencenosulfonatos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Iminas , Ratones , Óxidos de Nitrógeno , Receptores Acoplados a Proteínas G
10.
Acta Biomater ; 138: 453-462, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34757232

RESUMEN

Pancreatic cancer (PC) is the most lethal malignancy due to its high metastatic ability and poor drug permeability. Here, a synergized interventional photothermal-immunotherapy strategy was developed with imaging guidance and temperature monitoring by magnetic resonance imaging (MRI) technique, for the local treatment of metastatic PC. A tumor microenvironment (TME)-responsive nanoplatform was fabricated via coating of DSPE-PEG and indocyanine green (ICG) onto imiquimod (IMQ) loaded amorphous iron oxide nanoparticles (IONs). This unique nanoplatform, IMQ@IONs/ICG, served as a contrast agent for MRI, a drug delivery vehicle for IMQ and ICG, and a catalyst for TME modulation. The biodegradable IMQ@IONs/ICG was also non-toxic, and improved the penetration of the loaded drugs in PC to maximize thermal ablation of the tumor and minimize damage to the surrounding healthy tissue. For the treatment of aggressive, metastatic Panc02-H7 pancreatic tumors in mice, ION-assisted MRI was employed to guide the administration of interventional photothermal therapy (IPTT) and monitor the temperature distribution in target tumor and surrounding tissue during treatment. The local IPTT treatment induced in situ immunogenic cell death (ICD), and, in combination with released IMQ, triggered a strong antitumor immunity, leading to decreased metastases and increased CD8+ in spleen and tumors. With precise local treatment and monitoring, treated primary tumors were completely eradicated, mesentery metastases were dramatically reduced, and the survival time was significantly prolonged, without damage to normal tissue and systemic autoimmunity. Overall, this synergistic strategy represents a promising approach to treat PC with significant potential for clinical applications. STATEMENT OF SIGNIFICANCE: Pancreatic cancer (PC) is one of the most lethal malignancies because it is non-permeable to drugs and highly metastatic. In this study, we designed a tumor microenvironment-responsive amorphous iron oxide nanoplatform (ION) to co-deliver photothermal agent (ICG) and toll-like-receptor-7 agonist (IMQ). This biodegradable nanoplatform IMQ@IONs/ICG improved the penetration of the loaded drugs in pancreatic tumor. With MR imaging guidance and temperature monitoring, the precise interventional photothermal therapy on mouse Panc02-H7 orthotopic tumors releases tumor antigens to initiate tumor-special immune responses, amplified by the released IMQ. Our results demonstrate that IMQ@IONs/ICG overcomes the obstacle of drug delivery to pancreatic tumors, and when combined with photothermal therapy, induces a systemic antitumor immunity to control metastatic tumors.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Compuestos Férricos , Inmunoterapia , Verde de Indocianina , Ratones , Neoplasias Pancreáticas/terapia , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
11.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943535

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, often incapacitating condition characterized by pain seeming to originate in the bladder in conjunction with lower urinary tract symptoms of frequency and urgency, and consists of a wide range of clinical phenotypes with diverse etiologies. There are currently no diagnostic tests for IC/BPS. Magnetic resonance imaging (MRI) is a relatively new tool to assess IC/BPS. There are several methodologies that can be applied to assess either bladder wall or brain-associated alterations in tissue morphology and/or pain. IC/BPS is commonly associated with bladder wall hyperpermeability (BWH), particularly in severe cases. Our group developed a contrast-enhanced magnetic resonance imaging (CE-MRI) approach to assess BWH in preclinical models for IC/BPS, as well as for a pilot study for IC/BPS patients. We have also used the CE-MRI approach to assess possible therapies to alleviate the BWH in preclinical models for IC/BPS, which will hopefully pave the way for future clinical trials. In addition, we have used molecular-targeted MRI (mt-MRI) to quantitatively assess BWH biomarkers. Biomarkers, such as claudin-2, may be important to assess and determine the severity of BWH, as well as to assess therapeutic efficacy. Others have also used other MRI approaches to assess the bladder wall structural alterations with diffusion-weighted imaging (DWI), by measuring changes in the apparent diffusion coefficient (ADC), diffusion tensor imaging (DTI), as well as using functional MRI (fMRI) to assess pain and morphological MRI or DWI to assess anatomical or structural changes in the brains of patients with IC/BPS. It would be beneficial if MRI-based diagnostic tests could be routinely used for these patients and possibly used to assess potential therapeutics.

12.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754607

RESUMEN

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

13.
Geroscience ; 43(5): 2183-2203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606039

RESUMEN

The Oklahoma Shock Nathan Shock Center is designed to deliver unique, innovative services that are not currently available at most institutions. The focus of the Center is on geroscience and the development of careers of young investigators. Pilot grants are provided through the Research Development Core to junior investigators studying aging/geroscience throughout the USA. However, the services of our Center are available to the entire research community studying aging and geroscience. The Oklahoma Nathan Shock Center provides researchers with unique services through four research cores. The Multiplexing Protein Analysis Core uses the latest mass spectrometry technology to simultaneously measure the levels, synthesis, and turnover of hundreds of proteins associated with pathways of importance to aging, e.g., metabolism, antioxidant defense system, proteostasis, and mitochondria function. The Genomic Sciences Core uses novel next-generation sequencing that allows investigators to study the effect of age, or anti-aging manipulations, on DNA methylation, mitochondrial genome heteroplasmy, and the transcriptome of single cells. The Geroscience Redox Biology Core provides investigators with a comprehensive state-of-the-art assessment of the oxidative stress status of a cell, e.g., measures of oxidative damage and redox couples, which are important in aging as well as many major age-related diseases as well as assays of mitochondrial function. The GeroInformatics Core provides investigators assistance with data analysis, which includes both statistical support as well as analysis of large datasets. The Core also has developed number of unique software packages to help with interpretation of results and discovery of new leads relevant to aging. In addition, the Geropathology Research Resource in the Program Enhancement Core provides investigators with pathological assessments of mice using the recently developed Geropathology Grading Platform.


Asunto(s)
Envejecimiento , Gerociencia , Envejecimiento/genética , Animales , Biología , Ratones , Mitocondrias/genética , Oklahoma
14.
Neurooncol Adv ; 3(1): vdab132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704036

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults. These high-grade gliomas undergo unregulated vascular angiogenesis, migration and cell proliferation allowing the tumor cells to evade cell-cycle checkpoints and apoptotic pathways. The Epidermal growth factor, latrophilin, and seven transmembrane domain-containing 1 on chromosome 1 (ELTD1) is an angiogenic biomarker that is highly expressed in malignant gliomas. Novel treatments targeting ELTD1 with monovalent monoclonal (mmAb) and single chain variable fragment (scFv) antibodies were effective in increasing animal survival, decreasing tumor volume and normalizing the vasculature. Due to the success of our antibody treatments on angiogenesis, this study sought to determine if our anti-ELTD1 treatments affected other aspects of tumorigenesis (cell proliferation, migration, and apoptosis) in a G55 glioma xenograft preclinical mouse model. METHODS: Tumor tissue from untreated, mmAb and scFv anti-ELTD1 treated animals was used to quantify the positivity levels of human mitochondrial antibody, c-MET and Ki-67 for cellular proliferation, migratory markers CD44v6, TRPM8, and BMP2, and cleaved caspase 3 to assess apoptotic activity. RESULTS: This approach demonstrated that our anti-ELTD1 treatments directly affected and decreased the human tumor cells within the tumor region. Additionally, there was a significant decrease in both cellular proliferation and migration due to anti-ETLD1 therapy. Lastly, anti-ELTD1 treatments successfully increased apoptotic activity within the tumor region. CONCLUSION: Our data suggest that anti-ELTD1 therapies would be effective against malignant gliomas by having a multi-focal effect and targeting all four aspects of tumorigenesis.

15.
Geroscience ; 43(2): 563-578, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846885

RESUMEN

Rapamycin (RAPA) is found to have neuro-protective properties in various neuroinflammatory pathologies, including brain aging. With magnetic resonance imaging (MRI) techniques, we investigated the effect of RAPA in a lipopolysaccharide (LPS)-induced inflammaging model in rat brains. Rats were exposed to saline (control), or LPS alone or LPS combined with RAPA treatment (via food over 6 weeks). Arterial spin labeling (ASL) perfusion imaging was used to measure relative cerebral blood flow (rCBF). MR spectroscopy (MRS) was used to measure brain metabolite levels. Contrast-enhanced MRI (CE-MRI) was used to assess blood-brain barrier (BBB) permeability. Immunohistochemistry (IHC) was used to confirm neuroinflammation. RAPA restored NF-κB and HIF-1α to normal levels. RAPA was able to significantly restore rCBF in the cerebral cortex post-LPS exposure (p < 0.05), but not in the hippocampus. In the hippocampus, RAPA was able to restore total creatine (Cr) acutely, and N-acetyl aspartate (NAA) at 6 weeks, post-LPS. Myo-inositol (Myo-Ins) levels were found to decrease with RAPA treatment acutely post-LPS. RAPA was also able to significantly restore the BBB acutely post-LPS in both the cortex and hippocampus (p < 0.05 for both). RAPA was found to increase the percent change in BOLD signal in the cortex at 3 weeks, and in the hippocampus at 6 weeks post-LPS, compared to LPS alone. RAPA treatment also restored the neuronal and macro-vascular marker, EphB2, back to normal levels. These results indicate that RAPA may play an important therapeutic role in inhibiting neuroinflammation by normalizing brain vascularity, BBB, and some brain metabolites, and has a high translational capability.


Asunto(s)
Barrera Hematoencefálica , Sirolimus , Animales , Encéfalo , Circulación Cerebrovascular , Imagen por Resonancia Magnética , Ratas , Sirolimus/farmacología
16.
Pharmacol Res Perspect ; 9(1): e00709, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540486

RESUMEN

Few therapeutic options exist for treatment of IC/BPS. A novel high MW GAG biopolymer ("SuperGAG") was synthesized by controlled oligomerization of CS, purified by TFF and characterized by SEC-MALLS and 1H-NMR spectroscopy. The modified GAG biopolymer was tested in an OVX female rat model in which bladder permeability was induced by a 10-minute intravesicular treatment with dilute (1 mg/ml) protamine sulfate and measured by classical Ussing Chamber TEER measurements following treatment with SuperGAG, chondroitin sulfate, or saline. The effect on abrogating the abdominal pain response was assessed using von Frey filaments. The SuperGAG biopolymer was then investigated in a second, genetically modified mouse model (URO-MCP1) that increasingly is accepted as a model for IC/BPS. Permeability was induced with a brief exposure to a sub-noxious dose of LPS and was quantified using contrast-enhanced MRI (CE-MRI). The SuperGAG biopolymer restored impermeability to normal levels in the OVX rat model as measured by TEER in the Ussing chamber and reduced the abdominal pain response arising from induced permeability. Evaluation in the URO-MCP1 mouse model also showed restoration of bladder impermeability and showed the utility of CE-MRI imaging for evaluating the efficacy of agents to restore bladder impermeability. We conclude novel high MW SuperGAG biopolymers are effective in restoring urothelial impermeability and reducing pain produced by loss of the GAG layer on the urothelium. SuperGAG biopolymers could offer a novel and effective new therapy for IC/BPS, particularly if combined with MRI to assess the efficacy of the therapy.


Asunto(s)
Biopolímeros/uso terapéutico , Cistitis Intersticial/tratamiento farmacológico , Glicosaminoglicanos/uso terapéutico , Animales , Cistitis Intersticial/diagnóstico por imagen , Cistitis Intersticial/metabolismo , Femenino , Imagen por Resonancia Magnética , Ratones Transgénicos , Ovariectomía , Permeabilidad/efectos de los fármacos , Protaminas , Ratas Sprague-Dawley , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
17.
Mult Scler Relat Disord ; 49: 102786, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517175

RESUMEN

Multiple sclerosis (MS) and glioblastoma (GBM) are two distinct diseases that affect the central nervous system (CNS). However, perturbation in CNS vasculature are hallmarks of both diseases. ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain containing protein 1 on chromosome 1) is associated with vascular development, and has been linked with tumor angiogenesis. In glioblastomas, we detected over-expression of ELTD1, and found that an antibody targeting ELTD1 could increase animal survival and decrease tumor volumes in a xenograft GBM model. RNA-seq analysis of the preclinical data in the model for GBM identified that some of the molecular pathways affected by the anti-ELTD1 antibody therapy are also found to be associated with MS. In this study, we used molecular-targeted (mt) MR imaging and immunohistochemistry to assess ELTD1 levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Specifically, we found that ELTD1 is readily detected in the brains of mice with EAE and is predominantly found in the corpus callosum. In addition, we found that the blood-brain barrier (BBB) was compromised in the brains of EAE mice using contrast-enhanced MRI (CE-MRI), as well as altered relative cerebral blood flow (rCBF) in the brains and cervical spinal cords of these mice using perfusion imaging, compared to controls. These findings indicate that ELTD1 may be a promising biomarker for CNS-inflammation in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Biomarcadores , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Médula Espinal
18.
J Transl Med ; 18(1): 424, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33168005

RESUMEN

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is the most common brainstem cancer in childhood. This rapidly progressing brainstem glioma holds a very dismal prognosis with median survival of less than 1 year. Despite extensive research, no significant therapeutic advancements have been made to improve overall survival in DIPG patients. METHODS: Here, we used an orthotopic xenograft pediatric DIPG (HSJD-DIPG-007) mouse model to monitor the effects of anti-cancer agent, OKlahoma Nitrone-007 (OKN-007), as an inhibitor of tumor growth after 28 days of treatment. Using magnetic resonance imaging (MRI), we confirmed the previously described efficacy of LDN-193189, a known activin A receptor, type I (ACVR1) inhibitor, in decreasing tumor burden and found that OKN-007 was equally efficacious. RESULTS: After 28 days of treatment, the tumor volumes were significantly decreased in OKN-007 treated mice (p < 0.01). The apparent diffusion coefficient (ADC), as a measure of tissue structural alterations, was significantly decreased in OKN-007 treated tumor-bearing mice (p < 0.0001). Histological analysis also showed a significant decrease in CD34 expression, essential for angiogenesis, of OKN-007 treated mice (p < 0.05) compared to LDN-193189 treated mice. OKN-007-treated mice also significantly decreased protein expression of the human nuclear antigen (HNA) (p < 0.001), ACVR1 (p < 0.0001), and c-MET (p < 0.05), as well as significantly increased expression of cleaved caspase 3 (p < 0.001) and histone H3 K27-trimethylation (p < 0.01), compared to untreated mouse tumors. CONCLUSIONS: With the dismal prognosis and limited effective chemotherapy available for DIPG, there is significant room for continued research studies, and OKN-007 merits further exploration as a therapeutic agent.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Animales , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Niño , Glioma/tratamiento farmacológico , Humanos , Ratones , Óxidos de Nitrógeno , Oklahoma
19.
PLoS One ; 15(10): e0239282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33095778

RESUMEN

OBJECTIVES: To determine if the URO-MCP-1 mouse model for bladder IC/BPS is associated with in vivo bladder hyper-permeability, as measured by contrast-enhanced MRI (CE-MRI), and assess whether molecular-targeted MRI (mt-MRI) can visualize in vivo claudin-2 expression as a result of bladder hyper-permeability. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, painful condition of the bladder that affects primarily women. It is known that permeability plays a substantial role in IC/BPS. Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. Claudin-2 is a molecular marker that is associated with increased hyperpermeability in the urothelium. MATERIALS AND METHODS: CE-MRI was used to measure bladder hyper-permeability in the URO-MCP-1 mice. A claudin-2-specific mt-MRI probe was used to assess in vivo levels of claudin-2. The mt-MRI probe consists of an antibody against claudin-2 conjugated to albumin that had Gd-DTPA (gadolinium diethylenetriamine pentaacetate) and biotin attached. Verification of the presence of the mt-MRI probe was done by targeting the biotin moiety for the probe with streptavidin-horse radish peroxidase (SA-HRP). Trans-epithelial electrical resistance (TEER) was also used to assess bladder permeability. RESULTS: The URO-MCP-1 mouse model for IC/BPS was found to have a significant increase in bladder permeability, following liposaccharide (LPS) exposure, compared to saline-treated controls. mt-MRI- and histologically-detectable levels of the claudin-2 probe were found to increase with LPS -induced bladder urothelial hyper-permeability in the URO-MCP-1 IC mouse model. Levels of protein expression for claudin-2 were confirmed with immunohistochemistry and immunofluorescence imaging. Claudin-2 was also found to highly co-localize with zonula occlidens-1 (ZO-1), a tight junction protein. CONCLUSION: The combination of CE-MRI and TEER approaches were able to demonstrate hyper-permeability, a known feature associated with some IC/BPS patients, in the LPS-exposed URO-MCP-1 mouse model. This MRI approach could be clinically translated to establish which IC/BPS patients have bladder hyper-permeability and help determine therapeutic options. In addition, the in vivo molecular-targeted imaging approach can provide invaluable information to enhance our understanding associated with bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing further therapeutic strategies.


Asunto(s)
Claudina-2/metabolismo , Cistitis Intersticial/patología , Imagen por Resonancia Magnética/métodos , Sondas Moleculares/química , Vejiga Urinaria/fisiopatología , Animales , Anticuerpos/química , Anticuerpos/inmunología , Claudina-2/inmunología , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Gadolinio DTPA/química , Inmunohistoquímica , Lipopolisacáridos/toxicidad , Ratones , Permeabilidad/efectos de los fármacos , Albúmina Sérica/química
20.
J Mater Chem B ; 8(36): 8261-8270, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32812632

RESUMEN

Development of bioresponsive theranostic nanoparticles to enhance cancer diagnostics and control cancer metastasis is highly desirable. In this study, we developed such a bioresponsive theranostic nanoparticle for synergistic photoimmunotherapy. In particular, these nanoparticles were constructed by embedding indocyanine green (ICG) into Mn2+-doped amorphous calcium carbonate (ACC(Mn)) nanoparticles, followed by loading of the Toll-like-receptor-7 agonist imiquimod (IMQ). The IMQ@ACC(Mn)-ICG/PEG nanoparticles respond to the acidic pH of the tumor microenvironment (TME) and co-deliver ICG and IMQ into the tumor. Selective phototherapy was achieved upon activation using a near-infrared laser. In the presence of IMQ and arising from phototherapeutically treated tumor cells, tumor-associated antigens give rise to a strong antitumor immune response. Reversal of the immunosuppressive TME via H+ scavenging of the tumor through ACC nanoparticles effectively inhibits tumor metastases. Moreover, the combination of ICG and Mn2+ also serves as an advanced contrast agent for cancer multimode imaging. Overall, these bioresponsive nanoparticles provide a promising approach for cancer theranostics with promising potential for future clinical translation.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Antineoplásicos/uso terapéutico , Carbonato de Calcio/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Animales , Carbonato de Calcio/química , Línea Celular Tumoral , Medios de Contraste/efectos de la radiación , Medios de Contraste/uso terapéutico , Femenino , Concentración de Iones de Hidrógeno , Imiquimod/uso terapéutico , Inmunoterapia/métodos , Verde de Indocianina/efectos de la radiación , Verde de Indocianina/uso terapéutico , Rayos Infrarrojos , Manganeso/química , Ratones Endogámicos BALB C , Nanopartículas/química , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Nanomedicina Teranóstica/métodos , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...