Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(7): 1241-1247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945897

RESUMEN

Primary hepatocytes are valuable for studying liver diseases, drug-induced liver injury, and drug metabolism. However, when cultured in a two-dimensional (2D) environment, primary hepatocytes undergo rapid dedifferentiation via an epithelial-mesenchymal transition (EMT) and lose their liver-specific functions. On the other hand, a three-dimensional (3D) culture of primary hepatocyte organoids presents challenges for analyzing cellular functions and molecular behaviors due to strong cell-cell adhesion among heterogeneous cells. In this study, we developed a novel dispersion culture method of hepatocytes within a dome-shaped collagen matrix, overcoming conventional limitations. The expression levels of EMT-related genes were lower in rat primary hepatocytes cultured using this method for 4 d than in cells cultured using the 2D method. Furthermore, albumin production, a marker of liver function, declined sharply in rat primary hepatocytes cultured in two dimensions from 6.40 µg/mL/48 h on day 4 to 1.35 µg/mL/48 h on day 8, and declined gradually from 4.92 µg/mL/48 h on day 8 to 3.89 µg/mL/48 h on day 14 in rat primary hepatocytes cultured using our new method. These findings indicate that the newly developed culture method can suppress EMT and maintain liver functions for 14 d in rat primary hepatocytes, potentially expanding the utility of primary hepatocyte cultured by using conventional 3D methods.


Asunto(s)
Colágeno , Transición Epitelial-Mesenquimal , Hepatocitos , Hígado , Animales , Hepatocitos/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Células Cultivadas , Colágeno/metabolismo , Masculino , Hígado/metabolismo , Hígado/citología , Ratas , Técnicas de Cultivo de Célula/métodos , Ratas Sprague-Dawley , Albúminas/metabolismo
2.
Mol Psychiatry ; 26(12): 7550-7559, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34262135

RESUMEN

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin ß (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Asunto(s)
Trastorno Autístico , N-Metiltransferasa de Histona-Lisina/genética , Animales , Encéfalo/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Protocadherinas
3.
Transl Psychiatry ; 11(1): 275, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966051

RESUMEN

Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lactoilglutatión Liasa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactoilglutatión Liasa/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Piruvaldehído
4.
Cell Rep ; 35(2): 108971, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852848

RESUMEN

In schizophrenia (SCZ), neurons in the brain tend to undergo gross morphological changes, but the related molecular mechanism remains largely elusive. Using Kif3b+/- mice as a model with SCZ-like behaviors, we found that a high-betaine diet can significantly alleviate schizophrenic traits related to neuronal morphogenesis and behaviors. According to a deficiency in the transport of collapsin response mediator protein 2 (CRMP2) by the KIF3 motor, we identified a significant reduction in lamellipodial dynamics in developing Kif3b+/- neurons as a cause of neurite hyperbranching. Betaine administration significantly decreases CRMP2 carbonylation, which enhances the F-actin bundling needed for proper lamellipodial dynamics and microtubule exclusion and may thus functionally compensate for KIF3 deficiency. Because the KIF3 expression levels tend to be downregulated in the human prefrontal cortex of the postmortem brains of SCZ patients, this mechanism may partly participate in human SCZ pathogenesis, which we hypothesize could be alleviated by betaine administration.


Asunto(s)
Betaína/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Cinesinas/genética , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Seudópodos/efectos de los fármacos , Esquizofrenia/dietoterapia , Actinas/genética , Actinas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Transporte Biológico , Dieta/métodos , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Cinesinas/deficiencia , Masculino , Ratones , Ratones Noqueados , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/deficiencia , Neuronas/metabolismo , Neuronas/ultraestructura , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Unión Proteica , Carbonilación Proteica , Seudópodos/metabolismo , Seudópodos/ultraestructura , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología
5.
Int J Health Plann Manage ; 36(4): 1326-1337, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33893659

RESUMEN

It is important to clarify the influence of activities of daily living (ADL) at discharge on the discharge destination of hospitalised patients. The Functional Independence Measure (FIM) is a widely used ADL assessment scale. In this retrospective study, we aimed to identify what ADL based on FIM at discharge affect the discharge destination of hospitalised patients in an acute-care hospital, in addition to how nutritional status and the number of drugs used, as well as types of disease, affect discharge-to-home. We surveyed age, sex, disease type, length of hospital stay, discharge destination, FIM score at discharge, serum albumin level, and the number of continued drugs in hospitalised patients who underwent rehabilitation in Gifu Municipal Hospital (Gifu, Japan) between January 2014 and December 2014. Multiple logistic regression analysis was performed with discharge to home as a dependent variable and age, sex, disease, FIM score and polypharmacy as independent variables. Multiple logistic regression analysis indicated that a significantly high percentage of discharged-to-home patients were associated with 'self-care' (≥33 points; OR: 2.03), 'sphincter control' (≥14 points; OR: 1.49), 'transfers' (≥13 points; OR: 1.94), and 'locomotion' (≥7 points; OR: 3.55), among others. High FIM sub-scale scores at discharge for self-care, sphincter control, transfers, and locomotion were clarified as factors associated with discharge-to-home. These findings of the association of ADL based on FIM and discharge destination would be useful in deciding discharge destinations for patients in an acute-phase hospital.


Asunto(s)
Actividades Cotidianas , Alta del Paciente , Análisis Factorial , Hospitales , Humanos , Japón , Recuperación de la Función , Estudios Retrospectivos
6.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33656268

RESUMEN

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Asunto(s)
Esquizofrenia , Animales , Miedo , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Esquizofrenia/genética , Factores de Transcripción/genética
7.
Schizophr Bull ; 47(4): 1190-1200, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33595068

RESUMEN

We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Inhibición Prepulso/genética , Esquizofrenia/genética , Alelos , Animales , Humanos , Ratones , Sitios de Carácter Cuantitativo
8.
Int J Med Sci ; 18(5): 1130-1136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33526972

RESUMEN

Introduction: In recent years, there has been an increasing number of people who feel sleep-deprived owing to sudden changes in the social environment. Patients prescribed benzodiazepine-based hypnotics (BZ drugs) also develop movement disorder action and memory disorders as adverse events (AEs), and they have further problems such as dependency and tolerance because of long-term use. Therefore, the use of non-benzodiazepine-based hypnotics (Z-drugs) is recommended for patients with insomnia. However, as AEs have also been reported for Z-drugs, it is important to identify these when switching hypnotics. Methods: To understand AEs to be noted when switching from BZ drugs to Z-drugs, we evaluated the differences in AEs developed by both these drugs using volcano plots and safety signals. For this, data registered in the Japanese Adverse Drug Event Report database were used. Results: The volcano plot and safety signals revealed six characteristic Z-drug-induced AEs. Parasomnias (ln odds ratio [OR]: 3.28, -log P: 4.34, proportional reporting ratio [PRR]: 23.47, χ 2: 309.27), Cortical dysfunction NEC (ln OR: 2.76, -log P: 4.34, PRR: 3.62, χ 2: 16.14), and Psychiatric symptoms NEC (ln OR: 2.66, -log P: 2.18, PRR: 2.51, χ 2: 6.63) were detected only in Z-drugs, and safety signals of Suicidal and self-injurious behaviour, Deliria, and Overdoses NEC were also detected with BZ drugs. However, the strength of safety signals was much higher with the Z-drugs. Conclusion: AEs related to falls and bone fractures are expected to be more strongly onset in BZ drugs than in Z-drugs, which are said to have less muscle relaxant action. However, there was no particularly significant difference in this parameter between the two drug classes. Understanding the difference between these AEs of Z-drugs and BZ drugs is important for the proper use of hypnotics.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Benzodiazepinas/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Hipnóticos y Sedantes/efectos adversos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Sustitución de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/psicología , Humanos , Japón/epidemiología , Farmacovigilancia
9.
Aging Clin Exp Res ; 33(4): 983-990, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32458358

RESUMEN

BACKGROUND: The Functional Independence Measure (FIM) evaluates the activities of daily living (ADL), and FIM efficiency represents daily improvement in FIM. Polypharmacy affects both ADL and FIM; however, few studies have evaluated its relationship with FIM efficiency. AIM: This retrospective study investigated the effect of polypharmacy on FIM efficiency in patients undergoing rehabilitation at our acute care hospital in 2014. METHODS: We collected data on the patients' age, sex, diagnosis, length of hospital stay, type and duration of rehabilitation, indications for rehabilitation, FIM score before and after rehabilitation, and number of pharmaceuticals being used. Polypharmacy was defined as the administration of five or more pharmaceuticals. Using propensity score matching, we compared the FIM efficiency between the polypharmacy and non-polypharmacy groups (sub-scales and totals). RESULTS: A total of 2455 patients were included. The analytical population included 2168 patients. The analytical population used for propensity score matching included 727 patients in each group (total: 1454 patients). The following FIM sub-scale items were found to be associated with significantly low FIM efficiency in the polypharmacy group: self-care (polypharmacy group FIM efficiency: 0.43 points/day, non-polypharmacy group FIM efficiency: 0.54 points/day) and sphincter control (0.11 points/day and 0.18 points/day, respectively). No significant differences in the FIM efficiency were observed either for any other sub-scales or for totals. DISCUSSION: In the polypharmacy group, self-care and sphincter control, in particular, were associated with inhibited improvement in ADL and FIM. CONCLUSIONS: Reducing polypharmacy among acute-phase patients would allow an earlier return to their normal daily lives.


Asunto(s)
Actividades Cotidianas , Polifarmacia , Estado Funcional , Hospitales , Humanos , Tiempo de Internación , Recuperación de la Función , Centros de Rehabilitación , Estudios Retrospectivos , Resultado del Tratamiento
10.
Brain Commun ; 2(2): fcaa145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33225276

RESUMEN

Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction, as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown, being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study, we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum levels of adipokines and other metabolic markers in autism spectrum disorder children (n = 123) and typically developing children (n = 92) at 4-12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4-6 years old: n = 21 for autism spectrum disorder and n = 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples, and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid composition in the cortex. Collectively, these results suggest that an 'adipo-brain axis' may underlie the pathophysiology of autism spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.

11.
EBioMedicine ; 58: 102917, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32739868

RESUMEN

BACKGROUND: Abnormalities of lipid metabolism contributing to the autism spectrum disorder (ASD) pathogenesis have been suggested, but the mechanisms are not fully understood. We aimed to characterize the lipid metabolism in ASD and to explore a biomarker for clinical evaluation. METHODS: An age-matched case-control study was designed. Lipidomics was conducted using the plasma samples from 30 children with ASD compared to 30 typical developmental control (TD) children. Large-scale lipoprotein analyses were also conducted using the serum samples from 152 children with ASD compared to 122 TD children. Data comparing ASD to TD subjects were evaluated using univariate (Mann-Whitney test) and multivariate analyses (conditional logistic regression analysis) for main analyses using cofounders (diagnosis, sex, age, height, weight, and BMI), Spearman rank correlation coefficient, and discriminant analyses. FINDINGS: Forty-eight significant metabolites involved in lipid biosynthesis and metabolism, oxidative stress, and synaptic function were identified in the plasma of ASD children by lipidomics. Among these, increased fatty acids (FAs), such as omega-3 (n-3) and omega-6 (n-6), showed correlations with clinical social interaction score and ASD diagnosis. Specific reductions of very-low-density lipoprotein (VLDL) and apoprotein B (APOB) in serum of ASD children also were found by large-scale lipoprotein analysis. VLDL-specific reduction in ASD was correlated with APOB, indicating VLDL-specific dyslipidaemia associated with APOB in ASD children. INTERPRETATION: Our results demonstrated that the increases in FAs correlated positively with social interaction are due to VLDL-specific degradation, providing novel insights into the lipid metabolism underlying ASD pathophysiology. FUNDING: This study was supported mainly by MEXT, Japan.


Asunto(s)
Trastorno del Espectro Autista/psicología , Dislipidemias/sangre , Ácidos Grasos/sangre , Lipidómica/métodos , Lipoproteínas VLDL/sangre , Adolescente , Apolipoproteína B-100/sangre , Trastorno del Espectro Autista/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Japón , Modelos Logísticos , Masculino , Metabolómica , Estrés Oxidativo , Interacción Social
12.
EMBO Mol Med ; 11(12): e10695, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31657521

RESUMEN

Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Sulfuros/metabolismo , Animales , Electroforesis en Gel Bidimensional , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Epigenómica , Masculino , Ratones , Proteómica , Esquizofrenia/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31591136

RESUMEN

Enhanced carbonyl stress underlies a subset of schizophrenia, but its causal effects remain elusive. Here, we elucidated the molecular mechanism underlying the effects of carbonyl stress in iPS cells in which the gene encoding zinc metalloenzyme glyoxalase I (GLO1), a crucial enzyme for the clearance of carbonyl stress, was disrupted. The iPS cells exhibited significant cellular and developmental deficits, and hyper-carbonylation of collapsing response mediator protein 2 (CRMP2). Structural and biochemical analyses revealed an array of multiple carbonylation sites in the functional motifs of CRMP2, particularly D-hook (for dimerization) and T-site (for tetramerization), which are critical for the activity of the CRMP2 tetramer. Interestingly, carbonylated CRMP2 was stacked in the multimer conformation by irreversible cross-linking, resulting in loss of its unique function to bundle microtubules. Thus, the present study revealed that the enhanced carbonyl stress stemmed from the genetic aberrations results in neurodevelopmental deficits through the formation of irreversible dysfunctional multimer of carbonylated CRMP2.


Asunto(s)
Mutación del Sistema de Lectura , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lactoilglutatión Liasa/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/genética , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Carbonilación Proteica , Conformación Proteica , Multimerización de Proteína , Esquizofrenia/metabolismo
14.
EBioMedicine ; 45: 432-446, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31255657

RESUMEN

BACKGROUND: Betaine is known to act against various biological stresses and its levels were reported to be decreased in schizophrenia patients. We aimed to test the role of betaine in schizophrenia pathophysiology, and to evaluate its potential as a novel psychotherapeutic. METHODS: Using Chdh (a gene for betaine synthesis)-deficient mice and betaine-supplemented inbred mice, we assessed the role of betaine in psychiatric pathophysiology, and its potential as a novel psychotherapeutic, by leveraging metabolomics, behavioral-, transcriptomics and DNA methylation analyses. FINDINGS: The Chdh-deficient mice revealed remnants of psychiatric behaviors along with schizophrenia-related molecular perturbations in the brain. Betaine supplementation elicited genetic background-dependent improvement in cognitive performance, and suppressed methamphetamine (MAP)-induced behavioral sensitization. Furthermore, betaine rectified the altered antioxidative and proinflammatory responses induced by MAP and in vitro phencyclidine (PCP) treatments. Betaine also showed a prophylactic effect on behavioral abnormality induced by PCP. Notably, betaine levels were decreased in the postmortem brains from schizophrenia, and a coexisting elevated carbonyl stress, a form of oxidative stress, demarcated a subset of schizophrenia with "betaine deficit-oxidative stress pathology". We revealed the decrease of betaine levels in glyoxylase 1 (GLO1)-deficient hiPSCs, which shows elevated carbonyl stress, and the efficacy of betaine in alleviating it, thus supporting a causal link between betaine and oxidative stress conditions. Furthermore, a CHDH variant, rs35518479, was identified as a cis-expression quantitative trait locus (QTL) for CHDH expression in postmortem brains from schizophrenia, allowing genotype-based stratification of schizophrenia patients for betaine efficacy. INTERPRETATION: The present study revealed the role of betaine in psychiatric pathophysiology and underscores the potential benefit of betaine in a subset of schizophrenia. FUND: This study was supported by the Strategic Research Program for Brain Sciences from AMED (Japan Agency for Medical Research and Development) under Grant Numbers JP18dm0107083 and JP19dm0107083 (TY), JP18dm0107129 (MM), JP18dm0107086 (YK), JP18dm0107107 (HY), JP18dm0107104 (AK) and JP19dm0107119 (KH), by the Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Numbers JP18H05435 (TY), JP18H05433 (AH.-T), JP18H05428 (AH.-T and TY), and JP16H06277 (HY), and by JSPS KAKENHI under Grant Number JP17H01574 (TY). In addition, this study was supported by the Collaborative Research Project of Brain Research Institute, Niigata University under Grant Numbers 2018-2809 (YK) and RIKEN Epigenetics Presidential Fund (100214-201801063606-340120) (TY).


Asunto(s)
Betaína/farmacología , Colina-Deshidrogenasa/genética , Psicotrópicos/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Metilación de ADN/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Genotipo , Humanos , Japón , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metanfetamina/farmacología , Ratones , Estrés Oxidativo/efectos de los fármacos , Sitios de Carácter Cuantitativo , Esquizofrenia/genética , Esquizofrenia/fisiopatología
15.
Proc Natl Acad Sci U S A ; 116(14): 7083-7088, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30890645

RESUMEN

Maternal infection during pregnancy increases risk of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder (ASD) in offspring. In rodents, maternal immune activation (MIA) yields offspring with schizophrenia- and ASD-like behavioral abnormalities. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with neurodevelopmental disorders. Here we found higher levels of sEH in the prefrontal cortex (PFC) of juvenile offspring after MIA. Oxylipin analysis showed decreased levels of epoxy fatty acids in the PFC of juvenile offspring after MIA, supporting increased activity of sEH in the PFC of juvenile offspring. Furthermore, expression of sEH (or EPHX2) mRNA in induced pluripotent stem cell-derived neurospheres from schizophrenia patients with the 22q11.2 deletion was higher than that of healthy controls. Moreover, the expression of EPHX2 mRNA in postmortem brain samples (Brodmann area 9 and 40) from ASD patients was higher than that of controls. Treatment with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor, in juvenile offspring from prenatal day (P) 28 to P56 could prevent cognitive deficits and loss of parvalbumin (PV) immunoreactivity in the medial PFC of adult offspring after MIA. In addition, dosing of TPPU to pregnant mothers from E5 to P21 could prevent cognitive deficits, and social interaction deficits and PV immunoreactivity in the medial prefrontal cortex of juvenile offspring after MIA. These findings suggest that increased activity of sEH in the PFC plays a key role in the etiology of neurodevelopmental disorders in offspring after MIA. Therefore, sEH represents a promising prophylactic or therapeutic target for neurodevelopmental disorders in offspring after MIA.


Asunto(s)
Epóxido Hidrolasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Exposición Materna/efectos adversos , Trastornos del Neurodesarrollo , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Animales , Epóxido Hidrolasas/genética , Femenino , Ratones , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/prevención & control , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/prevención & control , Esquizofrenia/inducido químicamente , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/prevención & control
16.
Neurobiol Dis ; 131: 104162, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29729395

RESUMEN

Schizophrenia is one of the leading causes of disability among mental disorders, contributing to a substantial socioeconomic burden. Our understanding of the mechanisms of the pathogenesis of the disease has largely been limited by its inherent complexity imparted by the polygenicity and interactions with environmental factors. Since pathobiological events are initiated in the schizophrenic brain long before the onset of the psychotic manifestations, characterizing these processes is limited, mainly due to a lack of access to neuronal tissues. Induced pluripotent stem cell (iPSC) technologies have provided an unprecedented opportunity to establish pluripotent stem cells from patients with schizophrenia and differentiate them into neuronal lineage, enabling an in vitro recapitulation of the pathogenesis of the disease. Despite the inherent challenges, patient-derived iPSC studies of schizophrenia have been instrumental in unraveling the cellular and molecular phenotypes that might be involved in the biological causality. Here we review the literature and focus on studies that have utilized patient-derived iPSCs to model the pathogenesis of schizophrenia. We also discuss the challenges in modeling cellular phenotypes of schizophrenia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas/patología , Esquizofrenia/patología , Diferenciación Celular/fisiología , Humanos , Modelos Biológicos , Fenotipo
17.
Biosci Biotechnol Biochem ; 83(1): 114-122, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30200826

RESUMEN

The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the "telogen model", suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia. Furthermore, in the "anagen model", STS promoted hair growth, probably by promoting hair follicle proliferation. Since STS elevated the skin surface temperature, its hair growth-promoting activity may be partly due to vasorelaxation, similar to MXD. In addition, STS is known to generate a gaseous mediator, H2S, which has vasorelaxation and anti-inflammatory/anti-oxidative stress activities. Therefore, STS and/or provisionally its metabolite, H2S, may aid the hair growth process. Collectively, these results suggest that salts of thiosulfate may represent a novel and beneficial remedy for hair loss.


Asunto(s)
Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Modelos Animales , Tiosulfatos/farmacología , Alopecia/tratamiento farmacológico , Animales , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C3H , Minoxidil/administración & dosificación , Minoxidil/efectos adversos , Minoxidil/farmacología , Modelos Biológicos , Temperatura Cutánea/efectos de los fármacos , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Tiosulfatos/administración & dosificación , Tiosulfatos/efectos adversos
18.
Sci Rep ; 8(1): 2158, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391571

RESUMEN

Maternal immune activation (MIA) contributes to behavioral abnormalities relevant to schizophrenia in adult offspring, although the molecular mechanisms underlying MIA-induced behavioral changes remain unclear. Here we demonstrated that dietary intake of glucoraphanin (GF), the precursor of a natural antioxidant sulforaphane, during juvenile and adolescent stages prevented cognitive deficits and loss of parvalbumin (PV) immunoreactivity in the medial prefrontal cortex (mPFC) of adult offspring after MIA. Gene set enrichment analysis by RNA sequencing showed that MIA caused abnormal expression of centrosome-related genes in the PFC and hippocampus of adult offspring, and that dietary intake of GF improved these abnormal gene expressions. Particularly, MIA increased the expression of suppressor of fermentation-induced loss of stress resistance protein 1 (Sfi1) mRNA in the PFC and hippocampus of adult offspring, and dietary intake of GF prevented the expression of Sfi1 mRNA in these regions. Interestingly, we found altered expression of SFI1 in the postmortem brains and SFI1 mRNA in hair follicle cells from patients with schizophrenia compared with controls. Overall, these data suggest that centrosome-related genes may play a role in the onset of psychosis in offspring after MIA. Therefore, dietary intake of GF-rich vegetables in high-risk psychosis subjects may prevent the transition to psychosis in young adulthood.


Asunto(s)
Encéfalo/inmunología , Dieta , Glucosinolatos/administración & dosificación , Imidoésteres/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/inmunología , Trastornos Psicóticos/prevención & control , Esquizofrenia/complicaciones , Adulto , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oximas , Embarazo , Efectos Tardíos de la Exposición Prenatal/dietoterapia , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Trastornos Psicóticos/etiología , Trastornos Psicóticos/patología , Sulfóxidos
19.
Stem Cell Reports ; 6(3): 422-35, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26905201

RESUMEN

Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neurogénesis , Neuronas/citología , Cultivo Primario de Células/métodos , Linfocitos T/citología , Células Cultivadas , Fibroblastos/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...