Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489379

RESUMEN

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Neuronas , Animales , Neuronas/fisiología , Encéfalo/diagnóstico por imagen , Uniones Comunicantes/fisiología , Caenorhabditis elegans/fisiología , Neuroimagen , Modelos Neurológicos
2.
Proc Natl Acad Sci U S A ; 121(5): e2310735121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252838

RESUMEN

Animals navigate their environment by manipulating their movements and adjusting their trajectory which requires a sophisticated integration of sensory data with their current motor status. Here, we utilize the nematode Caenorhabditis elegans to explore the neural mechanisms of processing the sensory and motor information for navigation. We developed a microfluidic device which allows animals to freely move their heads while receiving temporal NaCl stimuli. We found that C. elegans regulates neck bending direction in response to temporal NaCl concentration changes in a way which is consistent with a C. elegans' navigational strategy which regulates traveling direction toward preferred NaCl concentrations. Our analysis also revealed that the activity of a neck motor neuron is significantly correlated with neck bending and activated by the decrease in NaCl concentration in a phase-dependent manner. By combining the analysis of behavioral and neural response to NaCl stimuli and optogenetic perturbation experiments, we revealed that NaCl decrease during ventral bending activates the neck motor neuron which counteracts ipsilateral bending. Simulations further suggest that this phase-dependent response of neck motor neurons can facilitate curving toward preferred salt concentrations.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Cloruro de Sodio , Animales , Caenorhabditis elegans , Cloruro de Sodio Dietético , Neuronas Motoras
3.
BMC Bioinformatics ; 24(1): 254, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328814

RESUMEN

BACKGROUND: In the field of neuroscience, neural modules and circuits that control biological functions have been found throughout entire neural networks. Correlations in neural activity can be used to identify such neural modules. Recent technological advances enable us to measure whole-brain neural activity with single-cell resolution in several species including [Formula: see text]. Because current neural activity data in C. elegans contain many missing data points, it is necessary to merge results from as many animals as possible to obtain more reliable functional modules. RESULTS: In this work, we developed a new time-series clustering method, WormTensor, to identify functional modules using whole-brain activity data from C. elegans. WormTensor uses a distance measure, modified shape-based distance to account for the lags and the mutual inhibition of cell-cell interactions and applies the tensor decomposition algorithm multi-view clustering based on matrix integration using the higher orthogonal iteration of tensors (HOOI) algorithm (MC-MI-HOOI), which can estimate both the weight to account for the reliability of data from each animal and the clusters that are common across animals. CONCLUSION: We applied the method to 24 individual C. elegans and successfully found some known functional modules. Compared with a widely used consensus clustering method to aggregate multiple clustering results, WormTensor showed higher silhouette coefficients. Our simulation also showed that WormTensor is robust to contamination from noisy data. WormTensor is freely available as an R/CRAN package https://cran.r-project.org/web/packages/WormTensor .


Asunto(s)
Encéfalo , Caenorhabditis elegans , Animales , Reproducibilidad de los Resultados , Algoritmos , Análisis por Conglomerados
4.
Neurosci Res ; 186: 33-42, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252701

RESUMEN

Memory-related neuronal responses are often elicited by sensory stimuli that recapitulate previous experience. Despite the importance of this sensory input processing, its underlying mechanisms remain poorly understood. Caenorhabditis elegans chemotax towards salt concentrations experienced in the presence of food. The amphid sensory neurons ASE-left and ASE-right respond to increases and decreases of ambient salt concentration in opposite manners. AIA, AIB and AIY interneurons are post-synaptic to the ASE pair and are thought to be involved in the processing of salt information transmitted from ASE. However, it remains elusive how the responses of these interneurons are regulated by stimulus patterns. Here we show that AIY interneurons display an experience-dependent response to gradual salt concentration changes but not to abrupt stepwise concentration changes. Animals with AIY intact (but AIA and AIB ablated) chemotax towards low salt concentrations similarly to wild-type animals after cultivation with low salt. ASE neurons transmit salt information about the environment through glutamatergic signaling, directing the activity of the interneurons AIY that promote movement towards favorable conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Ácido Glutámico , Interneuronas/fisiología , Células Receptoras Sensoriales/fisiología , Cloruro de Sodio
5.
Neural Netw ; 145: 107-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34735889

RESUMEN

It is one of the ultimate goals of ethology to understand the generative process of animal behavior, and the ability to reproduce and control behavior is an important step in this field. However, it is not easy to achieve this goal in systems with complex and stochastic dynamics such as animal behavior. In this study, we have shown that MDN-RNN,a type of probabilistic deep generative model, is able to reproduce stochastic animal behavior with high accuracy by modeling the behavior of C. elegans. Furthermore, we found that the model learns different dynamics in a disentangled representation as a time-evolving Gaussian mixture. Finally, by combining the model and reinforcement learning, we were able to extract a behavioral policy of goal-directed behavior in silico, and showed that it can be used for regulating the behavior of real animals. This set of methods will be applicable not only to animal behavior but also to broader areas such as neuroscience and robotics.


Asunto(s)
Caenorhabditis elegans , Redes Neurales de la Computación , Animales , Conducta Animal , Aprendizaje , Modelos Estadísticos
6.
BMC Biol ; 18(1): 30, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32188430

RESUMEN

BACKGROUND: Annotation of cell identity is an essential process in neuroscience that allows comparison of cells, including that of neural activities across different animals. In Caenorhabditis elegans, although unique identities have been assigned to all neurons, the number of annotatable neurons in an intact animal has been limited due to the lack of quantitative information on the location and identity of neurons. RESULTS: Here, we present a dataset that facilitates the annotation of neuronal identities, and demonstrate its application in a comprehensive analysis of whole-brain imaging. We systematically identified neurons in the head region of 311 adult worms using 35 cell-specific promoters and created a dataset of the expression patterns and the positions of the neurons. We found large positional variations that illustrated the difficulty of the annotation task. We investigated multiple combinations of cell-specific promoters driving distinct fluorescence and generated optimal strains for the annotation of most head neurons in an animal. We also developed an automatic annotation method with human interaction functionality that facilitates annotations needed for whole-brain imaging. CONCLUSION: Our neuron ID dataset and optimal fluorescent strains enable the annotation of most neurons in the head region of adult C. elegans, both in full-automated fashion and a semi-automated version that includes human interaction functionalities. Our method can potentially be applied to model species used in research other than C. elegans, where the number of available cell-type-specific promoters and their variety will be an important consideration.


Asunto(s)
Encéfalo/fisiología , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Animales , Conjuntos de Datos como Asunto
7.
Proc Natl Acad Sci U S A ; 116(37): 18673-18683, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455735

RESUMEN

Animals demonstrate flexible behaviors through associative learning based on their experiences. Deciphering the neural mechanisms for sensing and integrating multiple types of sensory information is critical for understanding such behavioral controls. The soil nematode Caenorhabditis elegans avoids salt concentrations it has previously experienced under starvation conditions. Here, we identify a pair of sensory neurons, the ASG neuron pair, which in cooperation with the ASER salt-sensing neuron generate starvation-dependent salt avoidance. Animals whose sensory input is restricted to only ASER failed to show learned avoidance due to inappropriately directed navigation behaviors. However, their navigation through a salt concentration gradient was improved by allowing sensory inputs to ASG in addition to ASER. Detailed behavioral analyses of these animals revealed that input from ASG neurons is required not only for controlling the frequency of initiating a set of sharp turns (called pirouettes) based on detected ambient salt concentrations but also adjusting the migration direction during pirouettes. Optogenetic activation of ASER by ChR2 induced turning behaviors in a salt concentration-dependent manner where presence of intact ASG was important for the starvation-dependent responses. Calcium imaging of the activity of ASG neurons in freely moving worms revealed that ASG is activated upon turning behavior. Our results indicate that ASG neurons cooperate with the ASER neuron to generate destination-directed reorientation in starvation-associated salt concentration avoidance.


Asunto(s)
Caenorhabditis elegans/fisiología , Quimiotaxis/fisiología , Privación de Alimentos/fisiología , Células Receptoras Sensoriales/fisiología , Suelo/química , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Channelrhodopsins/metabolismo , Optogenética , Cloruro de Sodio/metabolismo
8.
IEEE/ACM Trans Comput Biol Bioinform ; 15(6): 1822-1831, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29990224

RESUMEN

Tracking many cells in time-lapse 3D image sequences is an important challenging task of bioimage informatics. Motivated by a study of brain-wide 4D imaging of neural activity in C. elegans, we present a new method of multi-cell tracking. Data types to which the method is applicable are characterized as follows: (i) cells are imaged as globular-like objects, (ii) it is difficult to distinguish cells on the basis of shape and size only, (iii) the number of imaged cells in the several-hundred range, (iv) movements of nearly-located cells are strongly correlated, and (v) cells do not divide. We developed a tracking software suite that we call SPF-CellTracker. Incorporating dependency on the cells' movements into the prediction model is the key for reducing the tracking errors: the cell switching and the coalescence of the tracked positions. We model the target cells' correlated movements as a Markov random field and we also derive a fast computation algorithm, which we call spatial particle filter. With the live-imaging data of the nuclei of C. elegans neurons in which approximately 120 nuclei of neurons were imaged, the proposed method demonstrated improved accuracy compared to the standard particle filter and the method developed by Tokunaga et al. (2014).


Asunto(s)
Rastreo Celular/métodos , Imagenología Tridimensional/métodos , Algoritmos , Animales , Encéfalo/citología , Caenorhabditis elegans/citología , Cadenas de Markov , Microscopía Confocal , Neuronas/citología , Programas Informáticos , Grabación en Video
9.
Proc Natl Acad Sci U S A ; 114(23): E4658-E4665, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536200

RESUMEN

Sensory receptor neurons match their dynamic range to ecologically relevant stimulus intensities. How this tuning is achieved is poorly understood in most receptors. The roundworm Caenorhabditis elegans avoids 21% O2 and hypoxia and prefers intermediate O2 concentrations. We show how this O2 preference is sculpted by the antagonistic action of a neuroglobin and an O2-binding soluble guanylate cyclase. These putative molecular O2 sensors confer a sigmoidal O2 response curve in the URX neurons that has highest slope between 15 and 19% O2 and approaches saturation when O2 reaches 21%. In the absence of the neuroglobin, the response curve is shifted to lower O2 values and approaches saturation at 14% O2 In behavioral terms, neuroglobin signaling broadens the O2 preference of Caenorhabditis elegans while maintaining avoidance of 21% O2 A computational model of aerotaxis suggests the relationship between GLB-5-modulated URX responses and reversal behavior is sufficient to broaden O2 preference. In summary, we show that a neuroglobin can shift neural information coding leading to altered behavior. Antagonistically acting molecular sensors may represent a common mechanism to sharpen tuning of sensory neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Globinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GMP Cíclico/metabolismo , Genes de Helminto , Globinas/genética , Guanilato Ciclasa/metabolismo , Modelos Neurológicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuroglobina , Oxígeno/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal
10.
PLoS Comput Biol ; 12(6): e1004970, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27271939

RESUMEN

To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured.


Asunto(s)
Núcleo Celular/fisiología , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Biología Computacional , Bases de Datos Factuales , Distribución Normal
11.
PLoS One ; 10(12): e0143880, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26623647

RESUMEN

Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance.


Asunto(s)
Intolerancia a la Glucosa/fisiopatología , Glucosa/metabolismo , Insulina/metabolismo , Adulto , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Progresión de la Enfermedad , Ayuno/metabolismo , Ayuno/fisiología , Femenino , Técnica de Clampeo de la Glucosa/métodos , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa/métodos , Humanos , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Periodo Posprandial/fisiología
12.
Cell Rep ; 8(4): 1171-83, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25131207

RESUMEN

Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.


Asunto(s)
Insulina/fisiología , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Regulación Alostérica , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Redes y Vías Metabólicas , Metaboloma , Fosfoproteínas/metabolismo , Fosforilación , Ratas , Transducción de Señal
13.
Bioinformatics ; 30(12): i43-51, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24932004

RESUMEN

MOTIVATION: Automated fluorescence microscopes produce massive amounts of images observing cells, often in four dimensions of space and time. This study addresses two tasks of time-lapse imaging analyses; detection and tracking of the many imaged cells, and it is especially intended for 4D live-cell imaging of neuronal nuclei of Caenorhabditis elegans. The cells of interest appear as slightly deformed ellipsoidal forms. They are densely distributed, and move rapidly in a series of 3D images. Thus, existing tracking methods often fail because more than one tracker will follow the same target or a tracker transits from one to other of different targets during rapid moves. RESULTS: The present method begins by performing the kernel density estimation in order to convert each 3D image into a smooth, continuous function. The cell bodies in the image are assumed to lie in the regions near the multiple local maxima of the density function. The tasks of detecting and tracking the cells are then addressed with two hill-climbing algorithms. The positions of the trackers are initialized by applying the cell-detection method to an image in the first frame. The tracking method keeps attacking them to near the local maxima in each subsequent image. To prevent the tracker from following multiple cells, we use a Markov random field (MRF) to model the spatial and temporal covariation of the cells and to maximize the image forces and the MRF-induced constraint on the trackers. The tracking procedure is demonstrated with dynamic 3D images that each contain >100 neurons of C.elegans. AVAILABILITY: http://daweb.ism.ac.jp/yoshidalab/crest/ismb2014 SUPPLEMENTARY INFORMATION: Supplementary data are available at http://daweb.ism.ac.jp/yoshidalab/crest/ismb2014


Asunto(s)
Rastreo Celular/métodos , Imagenología Tridimensional/métodos , Algoritmos , Animales , Caenorhabditis elegans/citología , Microscopía Confocal , Microscopía Fluorescente , Neuronas/citología , Imagen de Lapso de Tiempo
14.
Mol Syst Biol ; 9: 664, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23670537

RESUMEN

Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLC(ex)). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLC(ex) was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Insulina/farmacología , Glucógeno Hepático/biosíntesis , Animales , Línea Celular Tumoral , Simulación por Computador , Retroalimentación Fisiológica , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Modelos Biológicos , Ratas , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
15.
Mol Cell ; 46(6): 820-32, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22633957

RESUMEN

One of the unique characteristics of cellular signaling pathways is that a common signaling pathway can selectively regulate multiple cellular functions of a hormone; however, this selective downstream control through a common signaling pathway is poorly understood. Here we show that the insulin-dependent AKT pathway uses temporal patterns multiplexing for selective regulation of downstream molecules. Pulse and sustained insulin stimulations were simultaneously encoded into transient and sustained AKT phosphorylation, respectively. The downstream molecules, including ribosomal protein S6 kinase (S6K), glucose-6-phosphatase (G6Pase), and glycogen synthase kinase-3ß (GSK3ß) selectively decoded transient, sustained, and both transient and sustained AKT phosphorylation, respectively. Selective downstream decoding is mediated by the molecules' network structures and kinetics. Our results demonstrate that the AKT pathway can multiplex distinct patterns of blood insulin, such as pulse-like additional and sustained-like basal secretions, and the downstream molecules selectively decode secretion patterns of insulin.


Asunto(s)
Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Glucosa-6-Fosfatasa/metabolismo , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasa 3 beta , Cinética , Masculino , Fosforilación , Ratas , Proteínas Quinasas S6 Ribosómicas/metabolismo
16.
Nat Commun ; 3: 743, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22415834

RESUMEN

Sensitivity is one of the hallmarks of biological and pharmacological responses. However, the principle of controlling sensitivity remains unclear. Here we theoretically analyse a simple biochemical reaction and find that the signal transfer efficiency of the transient peak amplitude attenuates depending on the strength of negative regulation. We experimentally find that many signalling pathways in various cell lines, including the Akt and ERK pathways, can be approximated by simple biochemical reactions and that the same property of the attenuation of signal transfer efficiency was observed for such pathways. Because of this property, a downstream molecule should show higher sensitivity to an activator and lower sensitivity to an inhibitor than an upstream molecule. Indeed, we experimentally verify that S6, which lies downstream of Akt, shows lower sensitivity to an epidermal growth factor receptor inhibitor than Akt. Thus, cells can control downstream sensitivity through the attenuation of signal transfer efficiency by changing the expression level of negative regulators.


Asunto(s)
Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3 , Animales , Línea Celular , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Células HeLa , Humanos , Lapatinib , Ratones , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Ratas , Transducción de Señal
17.
Sci Signal ; 3(132): ra56, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20664065

RESUMEN

In cellular signal transduction, the information in an external stimulus is encoded in temporal patterns in the activities of signaling molecules; for example, pulses of a stimulus may produce an increasing response or may produce pulsatile responses in the signaling molecules. Here, we show how the Akt pathway, which is involved in cell growth, specifically transmits temporal information contained in upstream signals to downstream effectors. We modeled the epidermal growth factor (EGF)-dependent Akt pathway in PC12 cells on the basis of experimental results. We obtained counterintuitive results indicating that the sizes of the peak amplitudes of receptor and downstream effector phosphorylation were decoupled; weak, sustained EGF receptor (EGFR) phosphorylation, rather than strong, transient phosphorylation, strongly induced phosphorylation of the ribosomal protein S6, a molecule downstream of Akt. Using frequency response analysis, we found that a three-component Akt pathway exhibited the property of a low-pass filter and that this property could explain decoupling of the peak amplitudes of receptor phosphorylation and that of downstream effectors. Furthermore, we found that lapatinib, an EGFR inhibitor used as an anticancer drug, converted strong, transient Akt phosphorylation into weak, sustained Akt phosphorylation, and, because of the low-pass filter characteristics of the Akt pathway, this led to stronger S6 phosphorylation than occurred in the absence of the inhibitor. Thus, an EGFR inhibitor can potentially act as a downstream activator of some effectors.


Asunto(s)
Receptores ErbB/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo , Transducción de Señal , Animales , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/antagonistas & inhibidores , Immunoblotting , Lapatinib , Modelos Biológicos , Células PC12 , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA