Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; 35(5): e4650, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34841602

RESUMEN

Dissolution dynamic nuclear polarisation (dDNP) of 13 C-labelled pyruvate in magnetic resonance spectroscopy/imaging (MRS/MRSI) has the potential for monitoring tumour progression and treatment response. Pyruvate delivery, its metabolism to lactate and efflux were investigated in rat P22 sarcomas following simultaneous intravenous administration of hyperpolarised 13 C-labelled pyruvate (13 C1 -pyruvate) and urea (13 C-urea), a nonmetabolised marker. A general mathematical model of pyruvate-lactate exchange, incorporating an arterial input function (AIF), enabled the losses of pyruvate and lactate from tumour to be estimated, in addition to the clearance rate of pyruvate signal from blood into tumour, Kip , and the forward and reverse fractional rate constants for pyruvate-lactate signal exchange, kpl and klp . An analogous model was developed for urea, enabling estimation of urea tumour losses and the blood clearance parameter, Kiu . A spectral fitting procedure to blood time-course data proved superior to assuming a gamma-variate form for the AIFs. Mean arterial blood pressure marginally correlated with clearance rates. Kiu equalled Kip , indicating equivalent permeability of the tumour vasculature to urea and pyruvate. Fractional loss rate constants due to effluxes of pyruvate, lactate and urea from tumour tissue into blood (kpo , klo and kuo , respectively) indicated that T1 s and the average flip angle, θ, obtained from arterial blood were poor surrogates for these parameters in tumour tissue. A precursor-product model, using the tumour pyruvate signal time-course as the input for the corresponding lactate signal time-course, was modified to account for the observed delay between them. The corresponding fractional rate constant, kavail , most likely reflected heterogeneous tumour microcirculation. Loss parameters, estimated from this model with different TRs, provided a lower limit on the estimates of tumour T1 for lactate and urea. The results do not support use of hyperpolarised urea for providing information on the tumour microcirculation over and above what can be obtained from pyruvate alone. The results also highlight the need for rigorous processes controlling signal quantitation, if absolute estimations of biological parameters are required.


Asunto(s)
Neoplasias , Ácido Pirúvico , Animales , Isótopos de Carbono , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Ácido Pirúvico/metabolismo , Ratas , Solubilidad , Urea
2.
Sci Rep ; 10(1): 9926, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555222

RESUMEN

Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity. Here, we found that active RhoA and ROCK effector phospho-myosin light chain (pMLC) were downregulated in endothelial cells by severe hypoxia. CA4P failed to activate RhoA/ROCK/pMLC but its activity was restored upon reoxygenation. Hypoxia also inhibited CA4P-mediated actinomyosin contractility, VE-cadherin junction disruption and permeability rise. Glucose withdrawal downregulated pMLC, and coupled with hypoxia, reduced pMLC faster and more profoundly than hypoxia alone. Concurrent inhibition of glycolysis (2-deoxy-D-glucose, 2DG) and mitochondrial respiration (rotenone) caused profound actin filament loss, blocked RhoA/ROCK signalling and rendered microtubules  CA4P-resistant. Withdrawal of the metabolism inhibitors restored the cytoskeleton and CA4P activity. The AMP-activated kinase AMPK was investigated as a potential mediator of pMLC downregulation. Pharmacological AMPK activators that generate AMP, unlike allosteric activators, downregulated pMLC but only when combined with 2DG and/or rotenone. Altogether, our results suggest that Rho/ROCK and actinomyosin contractility are regulated by AMP/ATP levels independently of AMPK, and point to hypoxia/energy depletion as potential modifiers of CA4P response.


Asunto(s)
Endotelio Vascular/patología , Hipoxia/fisiopatología , Neovascularización Patológica/patología , Estilbenos/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Actinas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Permeabilidad de la Membrana Celular , Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/inducido químicamente , Transducción de Señal , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
3.
ChemMedChem ; 13(24): 2618-2626, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30281922

RESUMEN

The combretastatins have attracted significant interest as small-molecule therapies for cancer due to their ability to function as vascular disrupting agents. We have successfully prepared a range of combretastatin analogues that are based on a novel sydnone heterocycle core, and their potential as tubulin binders has been assessed in vitro and in vivo. The most potent candidate was found to disrupt microtubules and affect cellular morphology at sub-micromolar levels. Moreover, it was found to bind reversibly to tubulin and significantly increase endothelial cell monolayer permeability, in a similar manner to combretastatin A4. Surprisingly, the compound did not exhibit efficacy in vivo, possibly due to rapid metabolism.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Estilbenos/farmacología , Sidnonas/farmacología , Inhibidores de la Angiogénesis/química , Animales , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones SCID , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Unión Proteica , Estilbenos/química , Relación Estructura-Actividad , Sidnonas/química , Tubulina (Proteína)/metabolismo
4.
Pharm Res ; 35(4): 90, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520495

RESUMEN

PURPOSE: This work explores synthesis of novel cholesterol derivative for the preparation of cationic liposomes and its interaction with Paclitaxel (PTX) within liposome membrane using molecular dynamic (MD) simulation and in-vitro studies. METHODS: Cholesteryl Arginine Ethylester (CAE) was synthesized and characterized. Cationic liposomes were prepared using Soy PC (SPC) at a molar ratio of 77.5:15:7.5 of SPC/CAE/PTX. Conventional liposomes were composed of SPC/cholesterol/PTX (92:5:3 M ratio). The interaction between paclitaxel, ligand and the membrane was studied using 10 ns MD simulation. The interactions were studied using Differential Scanning Calorimetry (DSC) and Small Angle Neutron Scattering analysis. The efficacy of liposomes was evaluated by MTT assay and endothelial cell migration assay on different cell lines. The safety of the ligand was determined using the Comet Assay. RESULTS: The cationic liposomes improved loading efficiency and stability compared to conventional liposomes. The increased PTX loading could be attributed to the hydrogen bond between CAE and PTX and deeper penetration of PTX in the bilayer. The DSC study suggested that inclusion of CAE in the DPPC bilayer eliminates Tg. SANS data showed that CAE has more pronounced membrane thickening effect as compared to cholesterol. The cationic liposomes showed slightly improved cytotoxicity in three different cell lines and improved endothelial cell migration inhibition compared to conventional liposomes. Furthermore, the COMET assay showed that CAE alone does not show any genotoxicity. CONCLUSIONS: The novel cationic ligand (CAE) retains paclitaxel within the phospholipid bilayer and helps in improved drug loading and physical stability. Graphical Abstract ᅟ.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Colesterol/análogos & derivados , Composición de Medicamentos/métodos , Diseño de Fármacos , Paclitaxel/administración & dosificación , Animales , Antineoplásicos Fitogénicos/química , Cationes/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colesterol/química , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Células Endoteliales , Humanos , Liposomas , Ratones , Simulación de Dinámica Molecular , Paclitaxel/química
5.
PLoS One ; 12(12): e0188591, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29220404

RESUMEN

CD68+ tumor-associated macrophages (TAMs) are pro-tumorigenic, pro-angiogenic and are associated with decreased survival rates in patients with cancer, including breast cancer. Non-specific models of macrophage ablation reduce the number of TAMs and limit the development of mammary tumors. However, the lack of specificity and side effects associated with these models compromise their reliability. We hypothesized that specific and controlled macrophage depletion would provide precise data on the effects of reducing TAM numbers on tumor development. In this study, the MacLow mouse model of doxycycline-inducible and selective CD68+ macrophage depletion was crossed with the murine mammary tumor virus (MMTV)-Polyoma virus middle T antigen (PyMT) mouse model of spontaneous ductal breast adenocarcinoma to generate the PyMT-MacLow line. In doxycycline-treated PyMT-MacLow mice, macrophage numbers were decreased in areas surrounding tumors by 43%. Reducing the number of macrophages by this level delayed tumor progression, generated less proliferative tumors, decreased the vascularization of carcinomas and down-regulated the expression of many pro-angiogenic genes. These results demonstrate that depleting CD68+ macrophages in an inducible and selective manner delays the development of mammary tumors and that the PyMT-MacLow model is a useful and unique tool for studying the role of TAMs in breast cancer.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Neoplasias de la Mama/inmunología , Modelos Animales de Enfermedad , Macrófagos/inmunología , Animales , Neoplasias de la Mama/patología , Doxiciclina/farmacología , Femenino , Humanos , Macrófagos/efectos de los fármacos , Ratones
6.
Oncotarget ; 8(56): 95648-95661, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29221156

RESUMEN

Solid tumours vary in sensitivity to the vascular disrupting agent combretastatin A-4 3-O-phosphate (CA4P), but underlying factors are poorly understood. The signaling sphingolipid, sphingosine-1-phosphate (S1P), promotes vascular barrier integrity by promoting assembly of VE-cadherin/ß-catenin complexes. We tested the hypothesis that tumour pre-treatment with S1P would render tumours less susceptible to CA4P. S1P (1µM) pretreatment attenuated an increase in endothelial cell (HUVEC) monolayer permeability induced by 10µM CA4P. Intravenously administered S1P (8mg/kg/hr for 20 minutes then 2mg/kg/hr for 40 minutes), reduced CA4P-induced (30mg/kg) blood flow shut-down in fibrosarcoma tumours in SCID mice (n≥7 per group), as measured by tumour retention of an intravenously administered fluorescent lectin. A trend towards in vivo protection was also found using laser Doppler flowmetry. Immunohistochemical staining of tumours ex vivo revealed disrupted patterns of VE-cadherin in vasculature of mice treated with CA4P, which were decreased by pretreatment with S1P. S1P treatment also stabilized N-cadherin junctions between endothelial cells and smooth muscle cells in culture, and stabilized tubulin filaments in HUVEC monolayers. We conclude that the rapid shutdown of tumour microvasculature by CA4P is due in part to disruption of adherens junctions and that S1P has a protective effect on both adherens junctions and the endothelial cell cytoskeleton.

7.
Biomed Opt Express ; 8(10): 4551-4567, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082084

RESUMEN

Subcutaneously implanted experimental tumors in mice are commonly used in cancer research. Despite their superficial location, they remain a challenge to image non-invasively at sufficient spatial resolution for microvascular studies. Here we evaluate the capabilities of optical coherence tomography (OCT) angiography for imaging such tumors directly through the murine skin in-vivo. Data sets were collected from mouse tumors derived from fibrosarcoma cells genetically engineered to express only single splice variant isoforms of vascular endothelial growth factor A (VEGF); either VEGF120 or VEGF188 (fs120 and fs188 tumors respectively). Measured vessel diameter was found to be significantly (p<0.001) higher for fs120 tumors (60.7 ± 4.9µm) compared to fs188 tumors (45.0 ± 4.0µm). The fs120 tumors also displayed significantly higher vessel tortuosity, fractal dimension and density. The ability to differentiate between tumor types with OCT suggests that the visible abnormal vasculature is representative of the tumor microcirculation, providing a robust, non-invasive method for observing the longitudinal dynamics of the subcutaneous tumor microcirculation.

8.
Cancer Res ; 77(10): 2633-2646, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28377452

RESUMEN

Elevated plasma concentrations of soluble VEGFA isoforms are associated with poor prognosis in parallel with improved response to treatment with the anti-VEGFA antibody bevacizumab. To uncover the underlying mechanism to these observations, we administered anti-VEGFA therapy to mice bearing luminescent mouse fibrosarcomas expressing single VEGFA isoforms or their wild-type counterparts expressing all isoforms (fs120, fs164, fs188, or fsWT). Expression of the more soluble isoforms conferred an advantage for lung metastasis from subcutaneous tumors (fs120/164 vs. fs188/WT); fs120 cells also produced more lung colonies than fs188 cells when injected intravenously. Metastasis from subcutaneous fs120 tumors was more sensitive than fs188 to treatment with the anti-VEGFA antibody B20-4.1.1. Despite elevated plasma levels of VEGFA in fs120 tumor-bearing mice and a dependence on VEGF receptor 1 activity for metastasis to the lung, B20-4.1.1 did not affect survival in the lung on intravenous injection. B20-4.1.1 inhibited subcutaneous tumor growth and decreased vascular density in both fs120 and fs188 tumors. However, migration of fs120, but not fs188 cells, in vitro was inhibited by B20-4.1.1. The greater survival of fs120 cells in the lung was associated with VEGFR1-dependent accumulation of CD11b-positive myeloid cells and higher expression of the VEGFR1 ligand, PlGF2, by the fs120 cells in vitro and in the plasma and lungs of fs120 tumor-bearing mice. We conclude that soluble VEGFA isoform expression increases fibrosarcoma metastasis through multiple mechanisms that vary in their sensitivity to anti-VEGF/VEGFR inhibition, with VEGFA-targeted therapy suppressing metastasis through effects on the primary tumor rather than the metastatic site. Cancer Res; 77(10); 2633-46. ©2017 AACR.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sarcoma/genética , Sarcoma/patología , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Metástasis de la Neoplasia , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Sarcoma/tratamiento farmacológico , Sarcoma/mortalidad , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Magn Reson Med ; 78(6): 2116-2126, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28191664

RESUMEN

PURPOSE: A rat model was developed to enable direct administration of hyperpolarized 13 C-labeled molecules into a tumor-supplying artery for magnetic resonance spectroscopy (MRS) studies of tumor metabolism. METHODS: Rat P22 sarcomas were implanted into the right inguinal fat pad of BDIX rats such that the developing tumors received their principle blood supply directly from the right superior epigastric artery. Hyperpolarized 13 C-molecules were either infused directly to the tumor through the epigastric artery or systemically through the contralateral femoral vein. Spectroscopic data were obtained on a 7 Tesla preclinical scanner. RESULTS: Intra-arterial infusion of hyperpolarized 13 C-pyruvate increased the pyruvate tumor signal by a factor of 4.6, compared with intravenous infusion, despite an approximately 7 times smaller total dose to the rat. Hyperpolarized glucose signal was detected at near-physiological systemic blood concentration. Pyruvate to lactate but not glucose to lactate metabolism was detected in the tumor. Hyperpolarized 13 C-labeled combretastatin A1 diphosphate, a tumor vascular disrupting agent, showed an in vivo signal in the tumor. CONCLUSIONS: The model maximizes tumor substrate/drug delivery and minimizes T1 relaxation signal losses in addition to systemic toxicity. Therefore, it permits metabolic studies of hyperpolarized substrates with relatively short T1 and opens up the possibility for preclinical studies of hyperpolarized drug molecules. Magn Reson Med 78:2116-2126, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética , Neoplasias/diagnóstico por imagen , Animales , Arterias/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Arterias Epigástricas/diagnóstico por imagen , Femenino , Vena Femoral/diagnóstico por imagen , Gadolinio/química , Masculino , Metástasis de la Neoplasia , Neoplasias/metabolismo , Imagen Óptica , Perfusión , Fosforilación , Ácido Pirúvico/química , Ratas , Espectrofotometría , Estilbenos/química
10.
J Med Chem ; 59(20): 9473-9488, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27690431

RESUMEN

The combretastatins are an important class of tubulin-binding agents. Of this family, a number of compounds are potent tumor vascular disrupting agents (VDAs) and have shown promise in the clinic for cancer therapy. We have developed a modular synthetic route to combretastatin analogs based on a pyrazole core through highly regioselective alkyne cycloaddition reactions of sydnones. These compounds show modest to high potency against human umbilical vein endothelial cell proliferation. Moreover, evidence is presented that these novel VDAs have the same mode of action as CA4P and bind reversibly to ß-tubulin, believed to be a key feature in avoiding toxicity. The most active compound from in vitro studies was taken forward to an in vivo model and instigated an increase in tumor cell necrosis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Pirazoles/farmacología , Estilbenos/farmacología , Sidnonas/química , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Ratones , Ratones SCID , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Pirazoles/química , Estilbenos/síntesis química , Estilbenos/química , Relación Estructura-Actividad
11.
Methods Mol Biol ; 1430: 265-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27172960

RESUMEN

The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging.Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method.


Asunto(s)
Antipirina/administración & dosificación , Bioensayo/métodos , Animales , Circulación Sanguínea , Velocidad del Flujo Sanguíneo , Microscopía Intravital , Ratones , Neovascularización Fisiológica , Técnicas de Cultivo de Tejidos
12.
Radiother Oncol ; 116(3): 392-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25824978

RESUMEN

PURPOSE: To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised (13)C1-pyruvate and magnetic resonance spectroscopy. METHODS AND MATERIALS: Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised (13)C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised (13)C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. RESULTS: MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p<0.01) from 0.029±0.002s(-1) to 0.049±0.006s(-1) (mean±SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. CONCLUSION: The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation.


Asunto(s)
Fibrosarcoma/metabolismo , Hipoxia/metabolismo , Espectroscopía de Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Isótopos de Carbono , Modelos Animales de Enfermedad , Ácido Láctico/metabolismo , Ratas
13.
Magn Reson Med ; 74(2): 303-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25168398

RESUMEN

PURPOSE: (129) Xe-blood NMR was performed over the full blood oxygenation range to evaluate (129) Xe relaxation and exchange dynamics in human blood. METHODS: Hyperpolarized (129) Xe was equilibrated with blood and isolated plasma, and NMR was performed at 1.5 T. RESULTS: The (129) Xe relaxation rate was found to increase nonlinearly with decreasing blood oxygenation. Three constants were extrapolated: rsO2 = 11.1, a "relaxivity index" characterizing the rate of change of (129) Xe relaxation as a function of blood oxygenation, and 1/T1oHb = 0.13 s(-1) and 1/T1dHb = 0.42 s(-1) , the (129) Xe relaxation rates in oxygenated blood and deoxygenated blood, respectively. In addition, rate constants, ka = 0.022 ms(-1) and kb = 0.062 ms(-1) , were determined for xenon diffusing between red blood cells (RBCs) and plasma (hematocrit = 48%). The (129) Xe-O2 relaxivity in plasma, rO2 = 0.075 s(-1) mM(-1) , and the (129) Xe relaxation rate in isolated plasma (without dissolved O2 ), 1/T1,b0 = 0.046 s(-1) , were also calculated. Finally, intrinsic (129) Xe-RBC relaxation rates, 1/T1,aoHb = 0.19 s(-1) and 1/T1,adHb = 0.84 s(-1) , in oxygenated blood and deoxygenated blood, respectively, were calculated. CONCLUSION: The relaxation and exchange analysis performed in this study should provide a sound experimental basis upon which to design future MR experiments for dissolved xenon transport from the lungs to distal tissues.


Asunto(s)
Análisis Químico de la Sangre/métodos , Eritrocitos/química , Modelos Biológicos , Oxígeno/química , Plasma/química , Isótopos de Xenón/química , Adsorción , Simulación por Computador , Medios de Contraste/química , Difusión , Humanos , Cinética , Imagen por Resonancia Magnética , Modelos Químicos , Radiofármacos/química
14.
PLoS One ; 9(8): e104015, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25119572

RESUMEN

Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Fibrosarcoma/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Carcinogénesis/genética , Adhesión Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Fibrosarcoma/patología , Regulación Neoplásica de la Expresión Génica , Ratones , Metástasis de la Neoplasia/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/química
15.
Proteomics ; 14(7-8): 890-903, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24520073

RESUMEN

Tumour vasculature is notoriously sinusoidal and leaky, and is hence susceptible to vascular disruption. Microtubule destabilising drugs such as the combretastatins form the largest group of tumour vascular disrupting agents and cause selective shutdown of tumour blood flow within minutes to hours, leading to secondary tumour cell death. Targeting the tumour vasculature is a proven anticancer strategy but early treatment response biomarkers are required for personalising treatment planning. Protein induction following treatment with combretastatin A4-phosphate was examined in a mouse fibrosarcoma model (fs188), where tumour cells express only the matrix-bound isoform of vascular endothelial growth factor A (VEGF188). These tumours are relatively resistant to vascular disruption by combretastatin A4-phosphate and hence a study of protein induction following treatment could yield insights into resistance mechanisms. The distribution of a number of proteins induced following treatment were visualised by MALDI-mass spectrometry imaging. Responses identified were validated by LC-ESI-MS/MS and immunohistochemical staining. Significant changes in proteins connected with necrosis, cell structure, cell survival and stress-induced molecular chaperones were identified. Protein-protein interactions were identified using STRING 9.0 proteomic network software. These relationship pathways provided an insight into the activity of the active tumour milieu and a means of linking the identified proteins to their functional partners.


Asunto(s)
Fibrosarcoma/genética , Neovascularización Patológica/genética , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Mapas de Interacción de Proteínas , Estilbenos/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/biosíntesis
16.
J Magn Reson ; 239: 1-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24355621

RESUMEN

Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100µl to 10.000ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7µl for 100µl and 20µl for 10.000ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4s post-injection trigger signal and at 9-12s in tumor tissue. The pH of the injected pyruvate was 7.1±0.3 (mean±S.D., n=10). For small injection volumes, e.g. less than 100µl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.


Asunto(s)
Metabolómica/instrumentación , Metabolómica/métodos , Resonancia Magnética Nuclear Biomolecular/instrumentación , Resonancia Magnética Nuclear Biomolecular/métodos , Animales , Calibración , Isótopos de Carbono , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador , Marcaje Isotópico , Imagen por Resonancia Magnética , Ratones , Neoplasias Experimentales/patología , Fantasmas de Imagen , Ácido Pirúvico/química , Conejos , Ratas , Reproducibilidad de los Resultados , Sarcoma Experimental/patología , Hidróxido de Sodio/química , Programas Informáticos
17.
Rapid Commun Mass Spectrom ; 27(21): 2355-62, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24097391

RESUMEN

RATIONALE: Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) provides a methodology to map the distribution of peptides generated by in situ tryptic digestion of biological tissue. It is challenging to correlate these peptides to the proteins from which they arise because of the many potentially overlapping and hence interfering peptide signals generated. METHODS: A recombinant protein has been synthesised that when cleaved with trypsin yields a range of peptide standards for use as identification and quantification markers for multiple proteins in one MALDI-IMS-MSI experiment. Mass spectrometry images of the distribution of proteins in fresh frozen and formalin-fixed paraffin-embedded tissue samples following in situ tryptic digestion were generated by isolating signals on the basis of their m/z value and ion mobility drift time, which were correlated to matching peptides in the recombinant standard. RESULTS: Tryptic digestion of the IMS-TAG protein and MALDI-MS analysis yielded m/z values and ion mobility drift time for the signature peptides included in it. MALDI-IMS-MSI images for the distribution of the proteins HSP90 and vimentin, in FFPE EMT6 mouse tumours, and HSP90 and plectin in a fresh frozen mouse fibrosarcoma, were generated by extracting ion images at the corresponding m/z value and drift time from the tissue samples. CONCLUSIONS: The IMS-TAG approach provides a new means to confirm the identity of peptides generated by in situ digestion of biological tissue.


Asunto(s)
Proteínas HSP90 de Choque Térmico/análisis , Neoplasias/diagnóstico , Mapeo Peptídico/métodos , Plectina/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Vimentina/análisis , Animales , Diagnóstico por Imagen/métodos , Proteínas HSP90 de Choque Térmico/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo , Vimentina/metabolismo
18.
Int J Cancer ; 133(11): 2563-76, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23712501

RESUMEN

Antiangiogenic therapy based on blocking the actions of vascular endothelial growth factor-A (VEGF) can lead to "normalization" of blood vessels in both animal and human tumors. Differential expression of VEGF isoforms affects tumor vascular maturity, which could influence the normalization process and response to subsequent treatment. Fibrosarcoma cells expressing only VEGF120 or VEGF188 isoforms were implanted either subcutaneously (s.c.) or in dorsal skin-fold "window" chambers in SCID mice. VEGF120 was associated with vascular fragility and hemorrhage. Tumor-bearing mice were treated with repeat doses of SU5416, an indolinone receptor tyrosine kinase inhibitor with activity against VEGFR-2 and proven preclinical ability to induce tumor vascular normalization. SU5416 reduced vascularization in s.c. implants of both VEGF120 and VEGF188 tumors. However, in the window chamber, SU5416 treatment increased red cell velocity in VEGF120 (representing vascular normalization) but not VEGF188 tumors. SU5416 treatment had no effect on growth or necrosis levels in either tumor type but tended to counteract the increase in interstitial fluid pressure seen with growth of VEGF120 tumors. SU5416 pretreatment resulted in the normally fragile blood vessels in VEGF120-expressing tumors becoming resistant to the vascular damaging effects of the tubulin-binding vascular disrupting agent (VDA), combretastatin A4 3-O-phosphate (CA4P). Thus, vascular normalization induced by antiangiogenic treatment can reduce the efficacy of subsequent VDA treatment. Expression of VEGF120 made tumors particularly susceptible to vascular normalization by SU5416, which in turn made them resistant to CA4P. Therefore, VEGF isoform expression may be useful for predicting response to both antiangiogenic and vascular-disrupting therapy.


Asunto(s)
Fibrosarcoma/genética , Isoformas de Proteínas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Fibrosarcoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Isoformas de Proteínas/genética , Pirroles/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
19.
Genesis ; 51(1): 41-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22927121

RESUMEN

Macrophages play an essential role in tissue homeostasis, innate immunity, inflammation, and wound repair. Macrophages are also essential during development, severely limiting the use of mouse models in which these cells have been constitutively deleted. Consequently, we have developed a transgenic model of inducible macrophage depletion in which macrophage-specific induction of the cytotoxic diphtheria toxin A chain (DTA) is achieved by administration of doxycycline. Induction of the DTA protein in transgenic animals resulted in a significant 50% reduction in CD68+ macrophages of the liver, spleen, and bone over a period of 6 weeks. Pertinently, the macrophages remaining after doxycycline treatment were substantially smaller and are functionally impaired as shown by reduced inflammatory cytokine production in response to lipopolysaccharide. This inducible model of macrophage depletion can now be utilized to determine the role of macrophages in both development and animal models of chronic inflammatory diseases.


Asunto(s)
Macrófagos/fisiología , Ratones Transgénicos , Modelos Animales , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Huesos/citología , Citocinas/inmunología , Toxina Diftérica/genética , Doxiciclina/toxicidad , Terapia de Inmunosupresión , Lipopolisacáridos/inmunología , Hígado/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Fragmentos de Péptidos/genética , Bazo/citología
20.
Microvasc Res ; 84(3): 330-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22982542

RESUMEN

Limited contrast in transmitted light optical images from intravital microscopy is problematic for analysing tumour vascular morphology. Moreover, in some cases, changes in vasculature are visible to a human observer but are not easy to quantify. In this paper two online algorithms are presented: scale-space vessel tracing and chromatic decomposition for analysis of the vasculature of SW1222 human colorectal carcinoma xenografts growing in dorsal skin-fold "window" chambers in mice. Transmitted light optical images of tumours were obtained from mice treated with the tumour vascular disrupting agent, combretastatin-A-4-phosphate (CA4P), or saline. The tracing algorithm was validated against hand-traced vessels with accurate results. The measurements extracted with the algorithms confirmed the known effects of CA4P on tumour vascular topology. Furthermore, changes in the chromaticity suggest a deoxygenation of the blood with a recovery to initial levels in CA4P-treated tumours relative to the controls. The algorithms can be freely applied to other studies through the CAIMAN website (CAncer IMage ANalysis: http://www.caiman.org.uk).


Asunto(s)
Microcirculación , Microvasos/patología , Algoritmos , Animales , Bibencilos/química , Línea Celular Tumoral , Color , Humanos , Internet , Luz , Ratones , Modelos Estadísticos , Óptica y Fotónica , Oxígeno/química , Fosfatos/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...