Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19817, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191814

RESUMEN

Botryosphaeriaceae species are the major causal agents of walnut dieback worldwide, along with Diaporthe species. Botryosphaeria dothidea and Neofusicoccum parvum are the only two Botryosphaeriaceae species associated with this recently emergent disease in France, and little is known about their diversity, structure, origin and dispersion in French walnut orchards. A total of 381 isolates of both species were genetically typed using a sequence-based microsatellite genotyping (SSR-seq) method. This analysis revealed a low genetic diversity and a high clonality of these populations, in agreement with their clonal mode of reproduction. The genetic similarity among populations, regardless of the tissue type and the presence of symptoms, supports the hypothesis that these pathogens can move between fruits and twigs and display latent pathogen lifestyles. Contrasting genetic patterns between N. parvum populations from Californian and Spanish walnut orchards and the French ones suggested no conclusive evidence for pathogen transmission from infected materials. The high genetic similarity with French vineyards populations suggested instead putative transmission between these hosts, which was also observed with B. dothidea populations. Overall, this study provides critical insight into the epidemiology of two important pathogens involved in the emerging dieback of French walnut orchards, including their distribution, potential to mate, putative origin and disease pathways.


Asunto(s)
Ascomicetos , Variación Genética , Juglans , Repeticiones de Microsatélite , Enfermedades de las Plantas , Juglans/microbiología , Ascomicetos/genética , Ascomicetos/clasificación , Francia , Enfermedades de las Plantas/microbiología , Repeticiones de Microsatélite/genética , Genotipo
2.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057341

RESUMEN

Fungi, including filamentous fungi and yeasts, are major contributors to global food losses and waste due to their ability to colonize a very large diversity of food raw materials and processed foods throughout the food chain. In addition, numerous fungal species are mycotoxin producers and can also be responsible for opportunistic infections. In recent years, MALDI-TOF MS has emerged as a valuable, rapid and reliable asset for fungal identification in order to ensure food safety and quality. In this context, this study aimed at expanding the VITEK® MS database with food-relevant fungal species and evaluate its performance, with a specific emphasis on species differentiation within species complexes. To this end, a total of 380 yeast and mold strains belonging to 51 genera and 133 species were added into the spectral database including species from five species complexes corresponding to Colletotrichum acutatum, Colletotrichum gloeosporioides, Fusarium dimerum, Mucor circinelloides complexes and Aspergillus series nigri. Database performances were evaluated by cross-validation and external validation using 78 fungal isolates with 96.55% and 90.48% correct identification, respectively. This study also showed the capacity of MALDI-TOF MS to differentiate closely related species within species complexes and further demonstrated the potential of this technique for the routine identification of fungi in an industrial context.

3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36724275

RESUMEN

AIMS: To investigate fungal diversity and biosurfactant-producing fungi in four oil-contaminated sites. METHODS AND RESULTS: Water and sediment samples were collected from four sites in Brittany (France), over two periods, in winter/spring and summer. Fungal diversity was investigated using a metagenetic approach targeting the ITS2 region. Surface-active compound production of 701 fungal isolates collected from these samples after direct plating or following enrichment was assessed using oil spreading and Parafilm M tests. Fungal communities were highly diverse and the main dominant fungal taxa were members of the Cladosporium, Penicillium, Pseudeurotium, Phoma, Aspergillus, and Trichoderma as well as Ochroconis, Fusicolla, and Aureobasidium genera in specific sites. A total of 179 isolates (25.5% of total isolates) were positive to at least one of the screening tests, while 105 were positive to both tests. Major genera among the positive isolates were Fusarium, Trichoderma, Candida, and Penicillium. Six isolates belonging to Aureobasidium pullulans, Mucor griseocyanus, Trichoderma citrinoviride, Trichoderma harzianum, Trichodermalongibrachiatum, and Diaporthe eres showed promising activities. CONCLUSIONS: The present study highlighted the fungal diversity of oil-contaminated environments and the fact that surface-active compound production is widespread in fungi originating from these habitats.


Asunto(s)
Hongos Mitospóricos , Penicillium , Trichoderma , Hongos , Tensoactivos , Aspergillus/genética , Candida , Penicillium/genética , Trichoderma/genética
4.
Food Res Int ; 144: 110344, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34053540

RESUMEN

This study aimed at investigating the influence of the process environment and raw materials as sources of microorganisms during Nyons black table olive fermentations. Fermented olives and/or brine from spoiled fermentation tanks were analyzed and compared to good quality samples from fermentations collected during 3 consecutive harvest years. Fresh olives, salt and different process environment samples were also analyzed. Microbial diversity of all samples was analyzed using 16S and ITS2 amplicon sequencing and SourceTracker tool was used to investigate links between environment, raw materials and fermentation samples. First, comparison of microbial diversity in control and most spoiled fermentations revealed striking differences in bacterial composition with an overall higher diversity in spoiled fermentations especially for lactic acid bacteria with Lentilactobacillus buchneri, Lentilactobacillus parafarraginis dominating in brine and Pediococcus parvulus, Pediococcus ethanolidurans dominating in olive fruits. Fungal communities were similar in composition although higher abundances of Pichia membranifaciens and Penicillium carneum/roqueforti were observed in spoiled samples. Secondly, process environment samples were characterized by high bacterial and fungal diversity, especially compared to fresh olive fruits. Overall, dominant fungal species in control fermentations were also found in most environmental samples revealing a "house mycobiota". SourceTracker analysis further highlighted the contribution of brine and water from the optical sorter as a source of fungi. Most interestingly, spoilage fungi and most bacteria were retrieved in brine and environmental samples while others such as P. ethanolidurans were only found in environmental samples indicating that the studied spoilage originated from a fermentation deviation rather than a punctual contamination. Taken altogether, these results highlighted the positive and negative influence of the process environment and emphasized the relevance of studying it to better understand microbial vectors occurring during food fermentations, especially natural ones.


Asunto(s)
Olea , Fermentación , Microbiología de Alimentos , Pediococcus , Penicillium , Pichia , Levaduras
5.
Food Microbiol ; 81: 76-88, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30910090

RESUMEN

Filamentous fungi are frequently involved in food spoilage and cause important food losses and substantial economic damage. Their rapid and accurate identification is a key step to better manage food safety and quality. In recent years, MALDI-TOF MS has emerged as a powerful tool to identify microorganisms and has successfully been applied to the identification of filamentous fungi especially in the clinical context. The aim of this study was to implement a spectral database representative of food spoilage molds. To this end, after application of a standardized extraction protocol, 6477 spectra were acquired from 618 fungal strains belonging to 136 species and integrated in the VITEK MS database. The performances of this database were then evaluated by cross-validation and ∼95% of correct identification to the species level was achieved, independently of the cultivation medium and incubation time. The database was also challenged with external isolates belonging to 52 species claimed in the database and 90% were correctly identified to the species level. To our best knowledge, this is the most comprehensive database of food-relevant filamentous fungi developed to date. This study demonstrates that MALDI-TOF MS could be an alternative to conventional techniques for the rapid and reliable identification of spoilage fungi in food and industrial environments.


Asunto(s)
Bases de Datos Factuales , Microbiología de Alimentos/métodos , Hongos/aislamiento & purificación , Técnicas de Tipificación Micológica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alimentos , Industria de Alimentos , Microbiología de Alimentos/normas , Inocuidad de los Alimentos , Hongos/clasificación , Técnicas de Tipificación Micológica/normas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...