Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 45(46): 13827-34, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17105201

RESUMEN

Phospholamban (PLN), a single-pass membrane protein, regulates heart muscle contraction and relaxation by reversible inhibition of the sarco(endo)plasmic reticulum Ca-ATPase (SERCA). Studies in detergent micelles and oriented lipid bilayers have shown that in its monomeric form PLN adopts a dynamic L shape (bent or T state) that is in conformational equilibrium with a more dynamic R state. In this paper, we use solid-state NMR on both uniformly and selectively labeled PLN to refine our initial studies, describing the topology and dynamics of PLN in oriented lipid bilayers. Two-dimensional PISEMA (polarization inversion spin exchange at the magic angle) experiments carried out in DOPC/DOPE mixed lipid bilayers reveal a tilt angle of the transmembrane domain with respect to the static magnetic field, of 21 +/- 2 degrees and, at the same time, map the rotation angle of the transmembrane domain with respect to the bilayer. PISEMA spectra obtained with selectively labeled samples show that the cytoplasmic domain of PLN is helical and makes an angle of 93 +/- 6 degrees with respect to the bilayer normal. In addition, using samples tilted by 90 degrees , we find that the transmembrane domain of PLN undergoes fast long-axial rotational diffusion about the bilayer normal with the cytoplasmic domain undergoing this motion and other complex dynamics, scaling the values of chemical shift anisotropy. While this dynamic was anticipated by previous solution NMR relaxation studies in micelles, these measurements in the anisotropic lipid environment reveal new dynamic and conformational features encoded in the free protein that might be crucial for SERCA recognition and subsequent inhibition.


Asunto(s)
Proteínas de Unión al Calcio/química , Membrana Dobles de Lípidos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
2.
J Mol Biol ; 358(4): 1041-50, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16564056

RESUMEN

Phosphorylation by protein kinase A and dephosphorylation by protein phosphatase 1 modulate the inhibitory activity of phospholamban (PLN), the endogenous regulator of the sarco(endo)plasmic reticulum calcium Ca(2+) ATPase (SERCA). This cyclic mechanism constitutes the driving force for calcium reuptake from the cytoplasm into the myocite lumen, regulating cardiac contractility. PLN undergoes a conformational transition between a relaxed (R) and tense (T) state, an equilibrium perturbed by the addition of SERCA. Here, we show that the single phosphoryl transfer at Ser16 induces a more pronounced conformational switch to the R state in phosphorylated PLN (pPLN). The binding affinity of PLN to SERCA is not affected (K(d) values for the transmembrane domains of pPLN and PLN are approximately 60 microM), supporting the hypothesis that phosphorylation at Ser16 does not dissociate PLN from SERCA. However, the binding surface and dynamics in domain Ib (residues 22-31) change substantially upon phosphorylation. Since PLN can be singly or doubly phosphorylated at Ser16 and Thr17, we propose that these sites remotely control the conformation of domain Ib. These findings constitute a paradigm for how post-translational modifications such as phosphorylation in the cytoplasmic portion of membrane proteins control intramembrane protein-protein interactions.


Asunto(s)
Proteínas de Unión al Calcio/química , ATPasas Transportadoras de Calcio/química , Sitio Alostérico , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Técnicas In Vitro , Cinética , Micelas , Modelos Moleculares , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Serina/química , Termodinámica
3.
Am J Physiol Heart Circ Physiol ; 286(1): H22-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14527943

RESUMEN

The goal of this study was to explore the occurrence of nitrated proteins in mitochondria given that these organelles are endowed with a mitochondrial nitric oxide (NO.-) synthase and considering the important role that mitochondria have in energy metabolism. Our hypothesis is that nitration of proteins constitutes a posttranslational modification by which NO.- exhibits long-term effects above and beyond those bioregulatory ones mediated through the interaction with cytochrome c oxidase. Our studies are aimed at understanding the mechanisms underlying the nitration of proteins in mitochondria and the biological significance of such a process in the cellular milieu. On promoting a sustained NO.- production by mitochondria, we investigated various aspects of protein nitration. Among them, the localization of nitrated proteins in mitochondrial subfractions, the identification of nitrated proteins through proteomic approaches, the characterization of affected pathways, and depiction of a target sequence. The biological relevance was analyzed by considering the turnover of native and nitrated proteins. In this regard, mitochondrial dysfunction, ensuing nitrative stress, may be envisioned as the result of accumulation of nitrated proteins, resulting from an overproduction of endogenous NO.- (this study), a failure in the proteolytic system to catabolize modified proteins, or a combination of both. Finally, this study allows one to gain understanding on the mechanism and nitrating species underlying mitochondrial protein nitration.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Secuencia de Aminoácidos/genética , Animales , Semivida , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Partículas Submitocóndricas/metabolismo , Distribución Tisular
4.
Amino Acids ; 25(3-4): 227-32, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14661086

RESUMEN

Dityrosine is found in several proteins as a product of UV irradiation, gamma-irradiation, aging, exposure to oxygen free radicals, nitrogen dioxide, peroxynitrite, and lipid hydroperoxides. Interest of dityrosine in proteins is based on its potential as a specific marker for oxidatively damaged proteins and their selective proteolysis, hence it could be used as a marker for oxidative stress. Dityrosine is also the product of normal post-translational processes affecting specific structural proteins. Since post-translational modification of a given amino acid in a protein is equivalent to the substitution of that residue by an analogue, it has been proposed that the covalent modification of amino acids may serve as a "marking" step for protein degradation.


Asunto(s)
Tirosina/análogos & derivados , Tirosina/metabolismo , Animales , Biomarcadores , Eritrocitos/metabolismo , Radicales Libres , Humanos , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Oxígeno/metabolismo , Proteínas/química , Proteínas/metabolismo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...