Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
JCI Insight ; 9(10)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38775152

RESUMEN

Children with perinatally acquired HIV (PHIV) have special vaccination needs, as they make suboptimal immune responses. Here, we evaluated safety and immunogenicity of 2 doses of 4-component group B meningococcal vaccine in antiretroviral therapy-treated children with PHIV and healthy controls (HCs). Assessments included the standard human serum bactericidal antibody (hSBA) assay and measurement of IgG titers against capsular group B Neisseria meningitidis antigens (fHbp, NHBA, NadA). The B cell compartment and vaccine-induced antigen-specific (fHbp+) B cells were investigated by flow cytometry, and gene expression was investigated by multiplexed real-time PCR. A good safety and immunogenicity profile was shown in both groups; however, PHIV demonstrated a reduced immunogenicity compared with HCs. Additionally, PHIV showed a reduced frequency of fHbp+ and an altered B cell subset distribution, with higher fHbp+ frequency in activated memory and tissue-like memory B cells. Gene expression analyses on these cells revealed distinct mechanisms between PHIV and HC seroconverters. Overall, these data suggest that PHIV presents a diverse immune signature following vaccination. The impact of such perturbation on long-term maintenance of vaccine-induced immunity should be further evaluated in vulnerable populations, such as people with PHIV.


Asunto(s)
Infecciones por VIH , Vacunas Meningococicas , Humanos , Infecciones por VIH/inmunología , Masculino , Femenino , Niño , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/administración & dosificación , Preescolar , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/prevención & control , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Linfocitos B/inmunología , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Inmunogenicidad Vacunal , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
2.
Immunol Lett ; 267: 106860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677335

RESUMEN

Immune checkpoint (IC) molecules modulate immune responses upon antigen presentation; the interaction between different IC molecules will result in the stimulation or, rather, the thwarting of such responses. Tumor cells express increased amounts of inhibitory IC molecules in an attempt to evade immune responses; therapeutic agents have been developed that bind inhibitory IC molecules, restoring tumor-directed immune responses and changing the prognosis of a number of cancers. Stimulation of inhibitory IC molecules could be beneficial in preventing rejection in the setting of solid organ transplantation (SOT), and in vivo as well as in vivo results obtained in animal models show this to indeed to be the case. With the exception of belatacept, a monoclonal antibody (mAb) in which an IgG Fc fragment is linked to the extracellular domain of CTLA-4, this has not yet translated into the generation of novel therapeutic approaches to prevent SOT rejection. We provide a review of state-of-the art knowledge on the role played by IC molecules in transplantation, confident that innovative research will lead to new avenues to manage rejection in solid organ transplant.


Asunto(s)
Rechazo de Injerto , Proteínas de Punto de Control Inmunitario , Trasplante de Órganos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Humanos , Trasplante de Órganos/efectos adversos , Animales , Proteínas de Punto de Control Inmunitario/metabolismo , Proteínas de Punto de Control Inmunitario/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología
3.
Biol Res ; 57(1): 2, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191441

RESUMEN

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Asunto(s)
COVID-19 , Interferón Tipo I , SARS-CoV-2 , alfa-Sinucleína , Células Endoteliales , Humanos , Línea Celular , Replicación Viral
4.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1550057

RESUMEN

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Asunto(s)
Humanos , Interferón Tipo I , alfa-Sinucleína , SARS-CoV-2 , COVID-19 , Replicación Viral , Línea Celular , Células Endoteliales
5.
Front Cell Neurosci ; 17: 1285836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116398

RESUMEN

Introduction: COVID-19 typically causes Q7 respiratory disorders, but a high proportion of patients also reports neurological and neuromuscular symptoms during and after SARSCoV-2 infection. Despite a number of studies documenting SARS-CoV-2 infection of various neuronal cell populations, the impact of SARS-CoV-2 exposure on motor neuronal cells specifically has not been investigated so far. Methods: Thus, by using human iPSC-derived motor neurons (iPSC-MNs) we assessed: (i) the expression of SARS-CoV-2 main receptors; (ii) iPSC-MN infectability by SARS-CoV-2; and (iii) the effect of SARS-CoV-2 exposure on iPSC-MN transcriptome. Results: Gene expression profiling and immunofluorescence (IF) analysis of the main host cell receptors recognized by SARS-CoV-2 revealed that all of them are expressed in iPSC-MNs, with CD147 and NRP1 being the most represented ones. By analyzing SARS-CoV-2 N1 and N2 gene expression over time, we observed that human iPSC-MNs were productively infected by SARS-CoV-2 in the absence of cytopathic effect. Supernatants collected from SARS-CoV-2-infected iPSC-MNs were able to re-infect VeroE6 cells. Image analyses of SARS-CoV-2 nucleocapsid proteins by IF confirmed iPSC-MN infectability. Furthermore, SARS-CoV-2 infection in iPSCMNs significantly altered the expression of genes (IL-6, ANG, S1PR1, BCL2, BAX, Casp8, HLA-A, ERAP1, CD147, MX1) associated with cell survival and metabolism, as well as antiviral and inflammatory response. Discussion: These results suggest for the very first time that SARS-CoV-2 can productively infect human iPSC-derived MNs probably by binding CD147 and NRP1 receptors. Such information will be important to unveil the biological bases of neuromuscular disorders characterizing SARS-CoV-2 infection and the so called long-COVID symptoms.

6.
Vaccines (Basel) ; 11(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37766157

RESUMEN

Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.

7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047752

RESUMEN

Coronavirus disease 19 (COVID-19) is clinically less severe in children, even if the wide variety and degree of severity of symptoms reported in children pose a still-unresolved challenge for clinicians. We performed an in-depth analysis of the immunological profiles of 18 hospitalized SARS-CoV-2-infected children, whose results were compared to those obtained from 13 age- and sex-matched healthy controls (HC). The patients were categorized as paucisymptomatic/moderate (55.6%) or severe/critical (44.5%) according to established diagnostic criteria and further stratified into the categories of infants (1-12 months), children (1-12 years), and adolescents (>12 years). We assessed SARS-CoV-2-specific RBD antibodies (Ab), neutralizing antibodies (nAb), and circulating cytokines/chemokines in the plasma, and the SARS-CoV-2-specific immune response was measured in PBMCs by gene expression and secretome analyses. Our results showed peculiar circulating cytokine/chemokine profiles among patients sharing a similar clinical phenotype. A cluster of patients consisting of infants with severe symptoms presented hyperinflammatory profiles, together with extremely polarized antibody profiles. In a second cluster consisting of paucisymptomatic patients, a less pronounced increase in the level of inflammatory cytokines, together with an association between the selected cytokines and humoral responses, was observed. A third cluster, again consisting of paucisymptomatic patients, showed a circulating cytokine/chemokine profile which overlapped with that of the HC. The SARS-CoV-2-stimulated production of pro-inflammatory proteins, T lymphocyte activation, and migration-specific proteins, were significantly increased in SARS-CoV-2-infected children compared to the HC. Our findings suggest that immune response activation in the course of SARS-CoV-2 infection in children is directly correlated with clinical severity and, to a lesser extent, age.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Citocinas , Quimiocinas
8.
AIDS Res Hum Retroviruses ; 39(9): 495-499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37031355

RESUMEN

At present, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines can elicit robust humoral and cellular immune responses in people living with HIV (PLWH) is still controversial. We assessed humoral and cellular immune response after the administration of the BNT162b2-mRNA-vaccine in seven antiretroviral therapy-treated PLWH patients and in nine HIV-negative health care workers (PWOH) over a 3-month span of time from the first vaccine dose. The neutralizing activity against both the European and the Delta variants declined after 3 months equally in both PLWH and PWOH. The gene expression analysis of factors involved in the antiviral immune response did not show any significant difference between PLWH and PWOH; among circulating cytokines/chemokines, a progressive decline was observed in the mean values of IL-1ß, IL-5, IL-6, IL-13, and IL-15 in both PLWH and PWOH. Conversely, the ratio between naive and terminally differentiated T-CD4+ effector memory showed a reduction trend over time in PLWH. Our findings showed no significant differences in the ability to mount an immune response after the administration of two SARS-CoV-2 mRNA BNT162b2 doses in PLWH and PWOH. However, as BNT162b2 vaccinated PLWH display an early waning immunity in the T cell compartment, the administration of a booster dose may be necessary to maintain a SARS-CoV-2-specific immune response.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Vacuna BNT162 , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Inmunidad Celular , Anticuerpos Antivirales , Inmunidad Humoral , Vacunación
11.
Front Immunol ; 14: 1301766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250079

RESUMEN

Background: Data on the efficacy of three SARS-CoV-2 mRNA BNT162b2 vaccine doses and the role of previous SARS-CoV-2-infection in enhancing vaccine immunogenicity in HIV-vertically-infected people living with HIV (PLWH) are limited, as is the duration of vaccine-induced responses. Methods: SARS-CoV-2 plasma neutralizing activity (NA) against the European (B.1), Delta (B.1.617.2) and Omicron (B.1.1.529) variants and cell-mediated immunity (CMI) were analyzed in 29 ART-treated young PLWH (mean age 27.9 years) and 30 healthy controls (HC) who received three BNT162b2 vaccine doses. Individuals were stratified based on the presence/absence of previous SARS-CoV-2 infection (infected and vaccinated -SIV-; uninfected and vaccinated -SV-). Analyses were performed before vaccination (T0), 25 days from the second dose (T1), the day the third dose was administered (T2), and 3 months after the third dose (T3). Results: In PLWH: i) NA against all variants was higher in SIV compared to SV at T2 and was increased at T3; ii) switched-memory plasmablasts were augmented in SIV alone at T2 and T3; iii) a SARS-CoV-2 specific T cell memory was generated; iv) IFN-γ-secreting CD4+ and CD8+ T lymphocytes were boosted at T3 mainly in SV. CMI magnitude was reduced in PLWH compared to HC. Notably, after the third dose of vaccine viremia was unmodified, but CD4 T cell counts were reduced>20% in 3/29 PHLW. Conclusion: A third dose of BNT162b2 vaccine induces strong humoral and CMI responses in young ART-treated PLWH independently from a previous SARS-CoV-2 natural infection. The lower magnitude of CMI responses should be considered when planning mRNA vaccine booster doses in PLWH.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Adulto , Vacunas contra la COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Inmunidad Celular , ARN Mensajero
12.
Front Immunol ; 13: 947320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072604

RESUMEN

To explore the effects of SARS-CoV-2-mRNA vaccines on innate immune responses we enrolled 58 individuals who received 3 doses of the BNT162b2 vaccine in a longitudinal study; 45 of these individuals had never been SARS-CoV-2 infected. Results showed that vaccination significantly increased: 1) classical and intermediate inflammatory monocytes, 2) CD56bright, CD56dim, and CD56dim/CD16dim NK cells, and 3) IFN-γ+ ;production as well as perforin and granzyme content by NK cells. Vaccination also reduced expression of the NK inhibitory receptor ILT-2, increasing that of the stimulatory molecule 2DS2. These effects were long-lasting and were boosted by every vaccine dose. Notably, ILT-2 expressing NK cells were reduced even more robustly in COVID-19-recovereed vaccines. BNT162b1 mRNA vaccine is known to induce potent adaptive immune responses; results herein show its ability to modulate innate immune responses as well, offering further support to the indication to proceed with worldwide vaccination efforts to end the SARS-CoV-2 pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Inmunidad Innata , Estudios Longitudinales , ARN Mensajero/genética , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
13.
Vaccines (Basel) ; 10(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632559

RESUMEN

BACKGROUND: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. METHODS: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. RESULTS: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. CONCLUSIONS: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules.

14.
Front Immunol ; 13: 827889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251011

RESUMEN

It is well established that pregnancy induces deep changes in the immune system. This is part of the physiological adaptation of the female organism to the pregnancy and the immunological tolerance toward the fetus. Indeed, over the three trimesters, the suppressive T regulatory lymphocytes are progressively more represented, while the expression of co-stimulatory molecules decreases overtime. Such adaptations relate to an increased risk of infections and progression to severe disease in pregnant women, potentially resulting in an altered generation of long-lived specific immunological memory of infection contracted during pregnancy. How potent is the immune response against SARS-CoV-2 in infected pregnant women and how long the specific SARS-CoV-2 immunity might last need to be urgently addressed, especially considering the current vaccinal campaign. To address these questions, we analyzed the long-term immunological response upon SARS-CoV-2 infection in pregnant women from delivery to a six-months follow-up. In particular, we investigated the specific antibody production, T cell memory subsets, and inflammation profile. Results show that 80% developed an anti-SARS-CoV-2-specific IgG response, comparable with the general population. While IgG were present only in 50% of the asymptomatic subjects, the antibody production was elicited by infection in all the mild-to-critical patients. The specific T-cell memory subsets rebalanced over-time, and the pro-inflammatory profile triggered by specific SARS-CoV-2 stimulation faded away. These results shed light on SARS-CoV-2-specific immunity in pregnant women; understanding the immunological dynamics of the immune system in response to SARS-CoV-2 is essential for defining proper obstetric management of pregnant women and fine tune gender-specific vaccinal plans.


Asunto(s)
COVID-19/inmunología , Memoria Inmunológica/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/inmunología , Adulto , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Embarazo , Mujeres Embarazadas , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Adulto Joven
15.
J Photochem Photobiol ; 10: 100107, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35036965

RESUMEN

We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.

17.
Cells ; 10(12)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34944057

RESUMEN

Effective antiviral immune responses rely on the host's genetic background and its interaction with the surrounding environment [...].


Asunto(s)
Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH/efectos de los fármacos , VIH/patogenicidad , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunidad/efectos de los fármacos
18.
J Clin Med ; 10(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34945060

RESUMEN

BACKGROUND: The effects of immunomodulators in patients with Coronavirus Disease 2019 (COVID-19) pneumonia are still unknown. We investigated the cellular inflammatory and molecular changes in response to standard-of-care + pidotimod (PDT) and explored the possible association with blood biomarkers of disease severity. METHODS: Clinical characteristics and outcomes, neutrophil-to-lymphocyte ratio (NLR), plasma and cell supernatant chemokines, and gene expression patterns after SARS-CoV-2 and influenza (FLU) virus in vitro stimulation were assessed in 16 patients with mild-moderate COVID-19 pneumonia, treated with standard of care and PDT 800 mg twice daily (PDT group), and measured at admission, 7 (T1), and 12 (T2) days after therapy initiation. Clinical outcomes and NLR were compared with age-matched historical controls not exposed to PDT. RESULTS: Hospital stay, in-hospital mortality, and intubation rate did not differ between groups. At T1, NLR was 2.9 (1.7-4.6) in the PDT group and 5.5 (3.4-7.1) in controls (p = 0.037). In the PDT group, eotaxin and IL-4 plasma concentrations progressively increased (p < 0.05). Upon SARS-CoV-2 and FLU-specific stimulation, IFN-γ was upregulated (p < 0.05), while at genetic transcription level, Pathogen Recognition Receptors (TRLs) were upregulated, especially in FLU-stimulated conditions. CONCLUSIONS: Immunomodulation exerted by PDT and systemic corticosteroids may foster a restoration in the innate response to the viral infection. These results should be confirmed in larger RCTs.

19.
Cells ; 10(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34831410

RESUMEN

While the risk of SARS-CoV-2 infection and/or COVID-19 disease progression in the general population has been largely assessed, its impact on HIV-positive individuals remains unclear. We present clinical and immunological data collected in a cohort of HIV-infected young individuals during the first wave of COVID-19 pandemic. SARS-CoV-2 RNA, virus-specific antibodies, as well as the expression of factors involved in the anti-viral immune response were analyzed. Moreover, we set up an in vitro coinfection assay to study the mechanisms correlated to the coinfection process. Our results did not show any increased risk of severe COVID-19 in HIV-positive young individuals. In those subjects who contracted SARS-CoV-2 infection, an increase in IL-10 expression and production was observed. Furthermore, in the in vitro coinfection assay, we revealed a reduction in SARS-CoV-2 replication associated to an upregulation of IL-10. We speculate that IL-10 could play a crucial role in the course of SARS-CoV-2 infection in HIV-positive individuals. These results might help defining clinical management of HIV/SARS-CoV-2 co-infected young individuals, or putative indications for vaccination schedules in this population.


Asunto(s)
COVID-19/inmunología , Coinfección/inmunología , Infecciones por VIH/inmunología , Adolescente , Adulto , COVID-19/virología , Niño , Preescolar , Coinfección/virología , Infecciones por VIH/virología , Humanos , Lactante , Inflamación , Interleucina-10/sangre , Interleucina-10/genética , Masculino , ARN Mensajero/sangre , SARS-CoV-2/inmunología , Adulto Joven
20.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638539

RESUMEN

The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.


Asunto(s)
COVID-19/sangre , Esfingolípidos/sangre , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Femenino , Humanos , Lipidómica , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Esfingolípidos/análisis , Esfingomielinas/análisis , Esfingomielinas/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...