Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 113(29): 9901-8, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19552399

RESUMEN

beta-Carotene radicals produced in the hexagonal pores of the molecular sieve Cu(II)-MCM-41 were studied by ENDOR and visible/near-IR spectroscopies. ENDOR studies showed that neutral radicals of beta-carotene were produced in humid air under ambient fluorescent light. The maximum absorption wavelengths of the neutral radicals were measured and were additionally predicted by using time-dependent density functional theory (TD-DFT) calculations. An absorption peak at 750 nm, assigned to the neutral radical with a proton loss from the 4(4') position of the beta-carotene radical cation in Cu(II)-MCM-41, was also observed in photosystem II (PS II) samples using near-IR spectroscopy after illumination at 20 K. This peak was previously unassigned in PS II samples. The intensity of the absorption peak at 750 nm relative to the absorption of chlorophyll radical cations and beta-carotene radical cations increased with increasing pH of the PS II sample, providing further evidence that the absorption peak is due to the deprotonation of the beta-carotene radical cation. Based on a consideration of possible proton acceptors that are adjacent to beta-carotene molecules in photosystem II, as modeled in the X-ray crystal structure of Guskov et al. Nat. Struct. Mol. Biol. 2009, 16, 334-342, an electron-transfer pathway from a beta-carotene molecule with an adjacent proton acceptor to P680*+ is proposed.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , beta Caroteno/química , Simulación por Computador , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Concentración de Iones de Hidrógeno , Modelos Químicos , Modelos Moleculares , Teoría Cuántica , Espectrofotometría Infrarroja
2.
Curr Opin Chem Biol ; 13(1): 3-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19249235

RESUMEN

Directed evolution can generate a remarkable range of new enzyme properties. Alternate substrate specificities and reaction selectivities are readily accessible in enzymes from families that are naturally functionally diverse. Activities on new substrates can be obtained by improving variants with broadened specificities or by step-wise evolution through a sequence of more and more challenging substrates. Evolution of highly specific enzymes has been demonstrated, even with positive selection alone. It is apparent that many solutions exist for any given problem, and there are often many paths that lead uphill, one step at a time.


Asunto(s)
Aminoácidos/genética , Evolución Molecular Dirigida , Enzimas/genética , Enzimas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Enzimas/química , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/tendencias , Especificidad por Sustrato
3.
Biochemistry ; 47(44): 11559-72, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18850718

RESUMEN

Photosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680(+). We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and beta-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at cryogenic temperatures. In contrast to previous results for Mn-depleted PS II, multiple near-IR absorption bands are resolved in the light-minus-dark difference spectra of oxygen-evolving PS II core complexes including two fast-decaying bands at 793 and 814 nm and three slow-decaying bands at 810, 825, and 840 nm. We assign these bands to chlorophyll cation radicals (Chl(+)). The fast-decaying bands observed after illumination at 20 K could be generated again by reilluminating the sample. Quantization by EPR gives a yield of 0.85 radicals per PS II, and the yield of oxidized cytochrome b 559 by optical difference spectroscopy is 0.15 per PS II. Potential locations of Chl(+) and Car(+) species, and the pathways of secondary electron transfer based on the rates of their formation and decay, are discussed. This is the first evidence that Chls in the light-harvesting proteins CP43 and CP47 are oxidized by P680(+) and may have a role in Chl fluorescence quenching. We also suggest that a possible role for negatively charged lipids (phosphatidyldiacylglycerol and sulfoquinovosyldiacylglycerol identified in the PS II structure) could be to decrease the redox potential of specific Chl and Car cofactors. These results provide new insight into the alternate electron-donation pathways to P680(+).


Asunto(s)
Clorofila/química , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Cinética , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Fotoquímica , Espectroscopía Infrarroja Corta , Electricidad Estática , Synechocystis/metabolismo , Termodinámica
4.
Photosynth Res ; 98(1-3): 189-97, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18780156

RESUMEN

Beta-carotene (Car) and chlorophyll (Chl) function as secondary electron donors in photosystem II (PS II) under conditions, such as low temperature, when electron donation from the O(2)-evolving complex is inhibited. In prior studies of the formation and decay of Car(*+) and Chl(*+) species at low temperatures, cytochrome b(559) (Cyt b(559)) was chemically oxidized prior to freezing the sample. In this study, the photochemical formation of Car(*+) and Chl(*+) is characterized at low temperature in O(2)-evolving Synechocystis PS II treated with ascorbate to reduce most of the Cyt b(559). Not all of the Cyt b(559) is reduced by ascorbate; the remainder of the PS II reaction centers, containing oxidized low-potential Cyt b(559), give rise to Car(*+) and Chl(*+) species after illumination at low temperature that are characterized by near-IR spectroscopy. These data are compared to the measurements on ferricyanide-treated O(2)-evolving Synechocystis PS II in which the Car(*+) and Chl(*+) species are generated in PS II centers containing mostly high- and intermediate-potential Cyt b(559). Spectral differences observed in the ascorbate-reduced PS II samples include decreased intensity of the Chl(*+) and Car(*+) absorbance peaks, shifts in the Car(*+) absorbance maxima, and lack of formation of a 750 nm species that is assigned to a Car neutral radical. These results suggest that different spectral forms of Car are oxidized in PS II samples containing different redox forms of Cyt b(559), which implies that different secondary electron donors are favored depending on the redox form of Cytb(559) in PS II.


Asunto(s)
Grupo Citocromo b/metabolismo , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/metabolismo , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Oxidación-Reducción , Fotosíntesis , beta Caroteno/metabolismo
5.
Photosynth Res ; 83(1): 45-52, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16143906

RESUMEN

Resonance Raman (RR) spectroscopy has been used to examine the configuration of the carotenoids bound to Synechocystis PCC 6803 Photosystem II (PS II) core complexes. The excitation wavelengths used (514.5, 488.0, 476.5 and 457.9 nm) span the absorption bands of all of the approximately 12-17 neutral carotenoids in the PS II core complex. The RR spectra of the two carotenoids associated with the D1-D2 polypeptides (Car507 and Car489) of the reaction center are extracted via light versus dark difference experiments measured at 20 K. The RR results are consistent with all-trans configurations for both Car507 and Car489 and indicate that majority of the other carotenoids in the PS II core complex must also be in the all-trans configuration. The configuration of beta-carotene is relevant to its proposed function as a molecular wire in the secondary electron-transfer reactions of PS II.


Asunto(s)
Carotenoides/química , Complejo de Proteína del Fotosistema II/química , Espectrometría Raman , Cianobacterias/enzimología , Temperatura
6.
J Biol Chem ; 280(46): 38839-50, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16159754

RESUMEN

Beta-carotene has been identified as an intermediate in a secondary electron transfer pathway that oxidizes Chl(Z) and cytochrome b(559) in Photosystem II (PS II) when normal tyrosine oxidation is blocked. To test the redox function of carotenoids in this pathway, we replaced the zeta-carotene desaturase gene (zds) or both the zds and phytoene desaturase (pds) genes of Synechocystis sp. PCC 6803 with the phytoene desaturase gene (crtI) of Rhodobacter capsulatus, producing carotenoids with shorter conjugated pi-electron systems and higher reduction potentials than beta-carotene. The PS II core complexes of both mutant strains contain approximately the same number of chlorophylls and carotenoids as the wild type but have replaced beta-carotene (11 double bonds), with neurosporene (9 conjugated double bonds) and beta-zeacarotene (9 conjugated double bonds and 1 beta-ionylidene ring). The presence of the ring appears necessary for PS II assembly. Visible and near-infrared spectroscopy were used to examine the light-induced formation of chlorophyll and carotenoid radical cations in the mutant PS II core complexes at temperatures from 20 to 160 K. At 20 K, a carotenoid cation radical is formed having an absorption maximum at 898 nm, an 85 nm blue shift relative to the beta-carotene radical cation peak in the WT, and consistent with the formation of the cation radical of a carotenoid with 9 conjugated double bonds. The ratio of Chl(+)/Car(+) is higher in the mutant core complexes, consistent with the higher reduction potential for Car(+). As the temperature increases, other carotenoids become accessible to oxidation by P(680)(+).


Asunto(s)
Carotenoides/química , Complejo de Proteína del Fotosistema II/química , Synechocystis/genética , Synechocystis/metabolismo , beta Caroteno/metabolismo , Cationes , Clorofila/química , Cromatografía , Cromatografía Líquida de Alta Presión , Electrones , Eliminación de Gen , Luz , Manganeso/química , Modelos Químicos , Modelos Moleculares , Mutación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Pigmentación , Rhodobacter capsulatus/metabolismo , Espectrofotometría , Espectrofotometría Infrarroja , Temperatura , Factores de Tiempo , Tirosina/química , beta Caroteno/química
8.
Biochemistry ; 42(30): 9127-36, 2003 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12885246

RESUMEN

Photosystem II (PS II) contains secondary electron-transfer paths involving cytochrome b(559) (Cyt b(559)), chlorophyll (Chl), and beta-carotene (Car) that are active under conditions when oxygen evolution is blocked such as in inhibited samples or at low temperature. Intermediates of the secondary electron-transfer pathways of PS II core complexes from Synechocystis PCC 6803 and Synechococcus sp. and spinach PS II membranes have been investigated using low temperature near-IR spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. We present evidence that two spectroscopically distinct redox-active carotenoids are formed upon low-temperature illumination. The Car(+) near-IR absorption peak varies in wavelength and width as a function of illumination temperature. Also, the rate of decay during dark incubation of the Car(+) peak varies as a function of wavelength. Factor analysis indicates that there are two spectral forms of Car(+) (Car(A)(+) has an absorbance maximum of 982 nm, and Car(B)(+) has an absorbance maximum of 1027 nm) that decay at different rates. In Synechocystis PS II, we observe a shift of the Car(+) peak to shorter wavelength when oxidized tyrosine D (Y(D)*) is present in the sample that is explained by an electrostatic interaction between Y(D)* and a nearby beta-carotene that disfavors oxidation of Car(B). The sequence of electron-transfer reactions in the secondary electron-transfer pathways of PS II is discussed in terms of a hole-hopping mechanism to attain the equilibrated state of the charge separation at low temperatures.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Tirosina/análogos & derivados , beta Caroteno/química , beta Caroteno/metabolismo , Adaptación Fisiológica , Cianobacterias , Oscuridad , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radicales Libres/metabolismo , Congelación , Complejos de Proteína Captadores de Luz , Distribución Normal , Oxidación-Reducción , Fotoquímica , Complejo de Proteína del Fotosistema II , Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/estadística & datos numéricos , Spinacia oleracea , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...