Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EJNMMI Phys ; 8(1): 68, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34626239

RESUMEN

BACKGROUND: This study aimed to evaluate the performance of a preclinical PET insert in three configurations: as a stand-alone unit outside the MRI bore, inside the bore of a cryogen-free 3T MRI and, finally, while performing simultaneous PET/MRI studies. METHODS: The PET insert consists of two rings of six detectors, each detector comprising 8 × 12 SiPMs reading out dual offset layers of pixelated LYSO crystals with a 1.4-mm pitch. The inner diameter is 60 mm, transaxial field of view (FoV) 40 mm and axial FoV 98 mm. Evaluation was based on NEMA NU 4-2008 guidelines with appropriate modifications. Spatial resolution and sensitivity were measured inside and outside the MR bore. Image quality, count rate and quantitative performance were measured in all three configurations. The effect of temperature stability on PET sensitivity during fast spin echo sequences was also evaluated. B0 field homogeneity and T1 and T2 relaxation times were measured using a water-filled phantom, with and without simultaneous PET operation. Finally, PET and MRI scans of a mouse injected with 10 MBq [18F]NaF and a mouse injected with 16 MBq [18F]FDG were performed in sequential and simultaneous modes. RESULTS: Peak absolute sensitivity was 10.15% with an energy window of 250-750 keV. Absolute sensitivity values outside and inside the MR bore with MR idle agreed to within 0.1%. Outside the MR bore, spatial resolution was 1.21/1.59 mm FWHM (radial/tangential) 5 mm from the centre of the FoV which compared well with 1.19/1.26 mm FWHM inside the MR bore. There were no substantial differences between all three scan configurations in terms of peak NEC rate (175 kcps at 17 MBq), scatter or random fractions. Uniformity and recovery coefficients were also consistent between scanning modes. B0 field homogeneity and T1 and T2 relaxation times were unaltered by the presence of the PET insert. No significant differences were observed between sequential and simultaneous scans of the animals. CONCLUSIONS: We conclude that the performance of the PET insert and MRI system is not significantly affected by the scanning mode.

2.
Eur J Pharmacol ; 873: 172979, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32014488

RESUMEN

Dialysis requiring renal failure is a silent epidemic. Despite an annual mortality of 24% the dialysis population has increased by 1-4% per annum. Regardless of the initial injury, tubulointerstitial fibrosis is a feature of the renal pathology and it inversely correlates with declining renal function. Current agents display little efficacy against tubulointerstitial fibrosis. Clearly, therapies effective against tubulointerstitial fibrosis and able to preserve kidney function are needed. Vasoactive intestinal peptide (VIP) has been shown to reverse pre-existing cardiac fibrosis. We sought to determine whether VIP is effective in tubulointerstitial fibrosis. Spontaneous hypertensive rats (SHR) on a 2.2% salt diet were randomised to zero time control, 4 week infusion of VIP (5 pmol/kg/min) or vehicle control infusion. A fourth group, to match the blood pressure reduction achieved in the VIP infused group was included. Fibrosis was quantitated by computerised histomorphometry, changes in pro-fibrotic mediators were measured by quantitative rt-PCR and macrophage activation assessed by cyclic adenosine monophosphate (c-AMP) response to incubation with VIP. Tubulointerstitial fibrosis in the VIP treated rats was significantly lower than the zero time control (P < 0.0005), the vehicle infused control (P < 0.0005) and the blood pressure matched group (P < 0.01). Although all six profibrotic mediators increased over the 4 week experimental period VIP infusion only decreased tumour necrosis alpha (TNFα) expression significantly (P < 0.001). Incubation of RAW264 macrophages with VIP significantly increased c-AMP (P < 0.01). We conclude that VIP infusion reversed existing tubulointerstitial fibrosis suggesting a possible therapeutic role for a VIP based therapy in chronic kidney disease.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Nefritis Intersticial/tratamiento farmacológico , Péptido Intestinal Vasoactivo/uso terapéutico , Animales , AMP Cíclico/farmacología , Fibrosis , Expresión Génica/efectos de los fármacos , Infusiones Intravenosas , Riñón/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Nefritis Intersticial/genética , Nefritis Intersticial/patología , Células RAW 264.7 , Ratas , Ratas Endogámicas SHR , Sodio en la Dieta , Factor de Necrosis Tumoral alfa/biosíntesis , Péptido Intestinal Vasoactivo/administración & dosificación
3.
Methods Mol Biol ; 1925: 127-142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30674022

RESUMEN

Ca2+ regulates many functions of skeletal muscle, including excitation-contraction coupling, energy homeostasis, and fiber-type-specific gene expression. However, microscopic observation of Ca2+ signalling in live skeletal muscle tissue has been hampered, in particular, by the combination of the high speed of Ca2+ transients and the contractile properties that are inherent to muscle. The present chapter describes methods to visualize Ca2+ signals during relaxation-contraction cycles in different subcellular compartments at high spatiotemporal resolution or at the global muscle level in combination with simultaneous measurements of muscle force. These protocols employ transfection of genetically encoded ratiometric Ca2+ sensors and two-photon microscopy as well as force transducers and associated hardware for data acquisition. Information on how to determine subcellular localization of the genetically encoded Ca2+ sensors and on how to calibrate the ratiometric data in a semiquantitative manner is given in the final paragraphs.


Asunto(s)
Calcio/metabolismo , Microscopía Confocal/métodos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Calcio/análisis , Señalización del Calcio , Acoplamiento Excitación-Contracción , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Contracción Muscular , Músculo Esquelético/ultraestructura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura , Transfección/métodos
4.
Ann N Y Acad Sci ; 1412(1): 54-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29125188

RESUMEN

While the majority of myasthenia gravis patients express antibodies targeting the acetylcholine receptor, the second most common cohort instead displays autoantibodies against muscle-specific kinase (MuSK). MuSK is a transmembrane tyrosine kinase found in the postsynaptic membrane of the neuromuscular junction. During development, MuSK serves as a signaling hub, coordinating the alignment of the pre- and postsynaptic components of the synapse. Adult mice that received repeated daily injections of IgG from anti-MuSK+ myasthenia gravis patients developed muscle weakness, associated with neuromuscular transmission failure. MuSK autoantibodies are predominantly of the IgG4 type. They suppress the kinase activity of MuSK and the phosphorylation of target proteins in the postsynaptic membrane. Loss of postsynaptic acetylcholine receptors is the primary cause of neuromuscular transmission failure. MuSK autoantibodies also disrupt the capacity of the motor nerve terminal to adaptively increase acetylcholine release in response to the reduced postsynaptic responsiveness to acetylcholine. The passive IgG transfer model of MuSK myasthenia gravis has been used to test candidate treatments. Pyridostigmine, a first-line cholinesterase inhibitor drug, exacerbated the disease process, while 3,4-diaminopyridine and albuterol were found to be beneficial in this mouse model.


Asunto(s)
Miastenia Gravis Autoinmune Experimental/etiología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/inmunología , Animales , Inhibidores de la Colinesterasa/farmacología , Femenino , Humanos , Inmunización Pasiva , Ratones , Proteínas Musculares/metabolismo , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/fisiopatología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Sinapsis/inmunología , Sinapsis/fisiología
5.
Cell Tissue Res ; 366(3): 679-692, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27543051

RESUMEN

In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.


Asunto(s)
Anfibios/metabolismo , Vasos Sanguíneos/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hibridación in Situ , Masculino , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Especificidad de Órganos/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
6.
Physiol Rep ; 3(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26702075

RESUMEN

We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle-specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti-MuSK-positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src-Y418 and AChR ß-subunit-Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno-associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK-EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK-EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV-MuSK-EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK-EGFP, forced expression of rapsyn-EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK-dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.

7.
Front Physiol ; 6: 86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859221

RESUMEN

Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication between the SAN and the surrounding atrial cells that form the SAN-atrial pacemaker complex and/or pathological processes that affect both the SAN and atrial simultaneously. Recent evidence suggests that Ca(2+) entry through TRPC3 (Transient Receptor Potential Canonical-3) channels may underlie several pathophysiological conditions -including cardiac arrhythmias. However, it is still not known if atrial and sinoatrial node cells are also involved. In this article we will first briefly review TRPC3 and IP3R signaling that relate to store/receptor-operated Ca(2+) entry (SOCE/ROCE) mechanisms and cardiac arrhythmias. We will then present some of our recent research progress in this field. Our experiments results suggest that pacing-induced AF in angiotensin II (Ang II) treated mice are significantly reduced in mice lacking the TRPC3 gene (TRPC3(-/-) mice) compared to wild type controls. We also show that pacemaker cells express TRPC3 and several other molecular components related to SOCE/ROCE signaling, including STIM1 and IP3R. Activation of G-protein coupled receptors (GPCRs) signaling that is able to modulate SOCE/ROCE and Ang II induced Ca(2+) homeostasis changes in sinoatrial complex being linked to TRPC3. The results provide new evidence that TRPC3 may play a role in sinoatrial and atrial arrhythmias that are caused by GPCRs activation.

8.
Front Physiol ; 3: 463, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23248600

RESUMEN

Muscle fatigue is the decline in performance of muscles observed during periods of intense activity. ATP consumption exceeds production during intense activity and there are multiple changes in intracellular metabolites which may contribute to the changes in crossbridge activity. It is also well-established that a reduction in activation, either through action potential changes or reduction in Ca(2+) release from the sarcoplasmic reticulum (SR), makes an additional contribution to fatigue. In this review we focus on the role of intracellular inorganic phosphate (P(i)) whose concentration can increase rapidly from around 5-30 mM during intense fatigue. Studies from skinned muscle fibers show that these changes substantially impair myofibrillar performance although the effects are strongly temperature dependent. Increased P(i) can also cause reduced Ca(2+) release from the SR and may therefore contribute to the reduced activation. In a recent study, we have measured both P(i) and Ca(2+) release in a blood-perfused mammalian preparation and the results from this preparation allows us to test the extent to which the combined effects of P(i) and Ca(2+) changes may contribute to fatigue.

9.
Gen Comp Endocrinol ; 171(3): 258-66, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21362425

RESUMEN

The natriuretic peptide (NP) family consists of at least seven members; cardiac ANP, BNP and VNP and brain CNPs (CNP1-4). Phylogenetic and comparative genomic analyses showed that CNP4 is the ancestral molecule of the family, from which CNP3 and CNP1/2 were duplicated in this order, and that the three cardiac NPs were generated from CNP3 by tandem duplication. Seven members existed at the divergence of ray-finned fishes and lobe-finned fishes (tetrapods), but some of the NP genes have disappeared during the course of evolution. In ray-finned fishes, all three cardiac NPs exist in chondrostei and some migratory teleost species, but VNP is generally absent and ANP is absent in a group of teleosts (Beloniformes). In tetrapods, ANP and BNP are present in mammals and amphibians, but ANP is usually absent in reptiles and birds. Thus, BNP is a ubiquitous cardiac NP in bony fishes and tetrapods though elasmobranchs and cyclostomes have only CNP3/4 as a cardiac NP. Functional studies indicate that cardiac NPs are essential Na(+)-extruding hormones throughout vertebrates; they play critical roles in seawater (SW) adaptation in teleosts, while they are important volume-depleting hormones in mammals as water and Na(+) are regulated in parallel in terrestrial animals. In mammals, cardiac NPs become prominent in pathological conditions such as heart failure where they are used in diagnosis and treatment. Although the functional role of BNP has not yet been fully elucidated compared with ANP in non-mammalian vertebrates, it appears that BNP plays pivotal roles in the cardiovascular and body fluid regulation as shown in mammals. ANP has previously been recognized as the principal cardiac NP in mammals and teleosts, but comparative studies have revealed that BNP is the only cardiac NP that exists in all tetrapods and teleosts. This is an excellent example showing that comparative studies have created new insights into the molecular and functional evolution of a hormone family.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Miocardio/metabolismo , Péptido Natriurético Encefálico/metabolismo , Péptidos Natriuréticos/metabolismo , Vertebrados/metabolismo , Animales , Factor Natriurético Atrial/química , Evolución Molecular , Genómica , Humanos , Péptido Natriurético Encefálico/química , Péptidos Natriuréticos/química
10.
Comp Biochem Physiol B Biochem Mol Biol ; 158(4): 274-81, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21199680

RESUMEN

Nitric oxide (NO) is generated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS, nos1), inducible NOS (iNOS, nos2), and endothelial NOS (eNOS, nos3). This study utilised the genome of Xenopus tropicalis to sequence a nos3 cDNA and determine if eNOS protein is expressed in blood vessels. A nos3 cDNA was sequenced that encoded a 1177 amino acid protein called XteNOS, which showed closest sequence identity to mammalian eNOS protein. The X. tropicalis nos3 gene and eNOS protein were determined to be an orthologue of mammalian nos3 and eNOS using gene synteny and phylogenetic analyses, respectively. In X. tropicalis, nos3 mRNA expression was highest in lung and skeletal muscle and lower in the liver, gut, kidney, heart and brain. Western analysis of kidney protein using an affinity-purified anti-XteNOS produced a single band at 140kDa. Immunohistochemistry showed XteNOS immunoreactivity in the proximal tubule of the kidney and endocardium of the heart, but not in the endothelium of blood vessels. Thus, X. tropicalis has a nos3 gene that appears not to be expressed in the vascular endothelium.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Endotelio Vascular/enzimología , Femenino , Masculino , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/clasificación , Óxido Nítrico Sintasa de Tipo III/genética , Filogenia , ARN Mensajero/metabolismo , Sintenía , Distribución Tisular , Xenopus , Proteínas de Xenopus/química , Proteínas de Xenopus/clasificación
11.
Gen Comp Endocrinol ; 156(2): 339-46, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18295764

RESUMEN

Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3' untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.


Asunto(s)
Factor Natriurético Atrial/química , Aves/metabolismo , Miocardio/metabolismo , Péptidos Natriuréticos/química , Reptiles/metabolismo , Caimanes y Cocodrilos , Animales , Factor Natriurético Atrial/genética , Clonación Molecular , Columbidae , ADN Complementario/biosíntesis , ADN Complementario/genética , Humanos , Lagartos , Péptido Natriurético Encefálico/biosíntesis , Péptido Natriurético Encefálico/genética , Péptidos Natriuréticos/genética , Técnicas de Amplificación de Ácido Nucleico , Filogenia , ARN/biosíntesis , ARN/genética , Rana catesbeiana , Serpientes , Especificidad de la Especie , Tortugas
12.
Peptides ; 28(11): 2155-63, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17905479

RESUMEN

The natriuretic peptide (NP) family consists of multiple subtypes in teleosts, including atrial, B-type, ventricular, and C-type NPs (ANP, BNP, VNP, CNP-1-4, respectively), but only ANP, BNP, CNP-3, and CNP-4 have been identified in tetrapods. As part of understanding the molecular evolution of NPs in the tetrapod lineage, we identified NP genes in the chicken genome. Previously, only BNP and CNP-3 have been identified in birds, but we characterized two new chicken NP genes by cDNA cloning, synteny and phylogenetic analyses. One gene is an orthologue of CNP-1, which has only ever been reported in teleostei and bichir. The second gene could not be assigned to a particular NP subtype because of high sequence divergence and was named renal NP (RNP) due to its predominant expression in the kidney. CNP-1 mRNA was only detected in brain, while CNP-3 mRNA was expressed in kidney, heart, and brain. In the developing embryo, BNP and RNP transcripts were most abundant 24h post-fertilization, while CNP mRNA increased in a stage-dependent manner. Synthetic chicken RNP stimulated an increase in cGMP production above basal level in chicken kidney membrane preparations and caused a potent dose-dependent vasodilation of pre-constricted dorsal aortic rings. From conserved chromosomal synteny, we propose that the CNP-4 and ANP genes have been lost in chicken, and that RNP may have evolved from a VNP-like gene. Furthermore, we have demonstrated for the first time that CNP-1 is retained in the tetrapod lineage.


Asunto(s)
Pollos/genética , Genómica/métodos , Péptidos Natriuréticos/genética , Secuencia de Aminoácidos , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Clonación Molecular , GMP Cíclico/metabolismo , ADN Complementario/química , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Evolución Molecular , Perfilación de la Expresión Génica , Técnicas In Vitro , Riñón/efectos de los fármacos , Riñón/metabolismo , Datos de Secuencia Molecular , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/farmacología , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/farmacología , Péptidos Natriuréticos/farmacología , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Trucha , Vasodilatación/efectos de los fármacos
13.
Gen Comp Endocrinol ; 147(1): 47-53, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16343494

RESUMEN

The natriuretic peptide (NP) system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. In amphibians, the potential role(s) of NPs is complicated by the range of osmoregulatory strategies found in amphibians, and the different tissues that participate in osmoregulation. Atrial NP, brain NP, and C-type NP have been isolated or cloned from a number of species, which has enabled physiological studies to be performed with homologous peptides. In addition, three types of NP receptors have been cloned and partially characterised. Natriuretic peptides are always potent vasodilators in amphibian blood vessels, and ANP has been shown to increase the permeability of the microcirculation. In the perfused kidney, ANP causes vasodilation, diuresis and natriuresis that are caused by an increased GFR rather than effects in the renal tubules. These data are supported by the presence of ANP receptors only on the glomeruli and renal blood vessels. In the bladder and skin, the function of NPs is enigmatic because physiological analysis of the effects of ANP on bladder and skin function has yielded conflicting data with no clear role for NPs being revealed. Overall, NPs often have no direct effect, but in some studies they have been shown to inhibit the function of AVT. In addition, there is evidence that ANP can inhibit salt retention in amphibians since it can inhibit the ability of adrenocorticotrophic hormone or angiotensin II to stimulate corticosteroid secretion. It is proposed that an important role for cardiac NPs could be in the control of hypervolaemia during periods of rapid rehydration, which occurs in terrestrial amphibians.


Asunto(s)
Anfibios/fisiología , Péptidos Natriuréticos/fisiología , Equilibrio Hidroelectrolítico , Secuencia de Aminoácidos , Anfibios/sangre , Animales , Secuencia de Bases , Encéfalo/metabolismo , Bufo marinus/genética , Modelos Biológicos , Datos de Secuencia Molecular , Péptidos Natriuréticos/sangre , Péptidos Natriuréticos/química , Volumen Plasmático , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...