Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2375011, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38956836

RESUMEN

Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Células Madre Mesenquimatosas , Osteogénesis , Membrana Sinovial , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Porcinos , Membrana Sinovial/citología , Membrana Sinovial/metabolismo , Células Cultivadas , Epigénesis Genética
2.
J Steroid Biochem Mol Biol ; 236: 106428, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984748

RESUMEN

In the currently prevailing pig husbandry systems, the vitamin D status is almost exclusively dependent on dietary supply. Additional endogenous vitamin D production after exposure to ultraviolet-B (UVB) light might allow the animals to utilize minerals in a more efficient manner, as well as enable the production of functional vitamin D-enriched meat for human consumption. In this study, growing pigs (n = 16) were subjected to a control group or to a daily narrowband UVB exposure of 1 standard erythema dose (SED) for a period of 9 weeks until slaughter at a body weight of 105 kg. Transcriptomic profiling of liver with emphasis on the associated effects on vitamin D metabolism due to UVB exposure were evaluated via RNA sequencing. Serum was analyzed for vitamin D status and health parameters such as minerals and biochemical markers. The serum concentration of calcidiol, but not calcitriol, was significantly elevated in response to UVB exposure after 17 days on trial. No effects of UVB exposure were observed on growth performance and blood test results. At slaughter, the RNA sequencing analyses following daily UVB exposure revealed 703 differentially expressed genes (DEGs) in liver tissue (adjusted p-value < 0.01). Results showed that molecular pathways for vitamin D synthesis (CYP2R1) rather than cholesterol synthesis (DHCR7) were preferentially initiated in liver. Gene enrichment (p < 0.05) was observed for reduced cholesterol/steroid biosynthesis, SNARE interactions in vesicular transport, and CDC42 signaling. Taken together, dietary vitamin D supply can be complemented via endogenous production after UVB exposure in pig husbandry, which could be considered in the development of functional foods.


Asunto(s)
Transcriptoma , Vitamina D , Humanos , Animales , Porcinos , Vitaminas , Rayos Ultravioleta , Colesterol , Minerales , Hígado/metabolismo
3.
Cells ; 12(15)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566003

RESUMEN

In contracting muscles, carbohydrates and fatty acids serve as energy substrates; the predominant utilization depends on the workload. Here, we investigated the contribution of non-mitochondrial and mitochondrial metabolic pathways in response to repeated training in a polygenic, paternally selected marathon mouse model (DUhTP), characterized by exceptional running performance and an unselected control (DUC), with both lines descended from the same genetic background. Both lines underwent three weeks of high-speed treadmill training or were sedentary. Both lines' muscles and plasma were analyzed. Muscle RNA was sequenced, and KEGG pathway analysis was performed. Analyses of muscle revealed no significant selection-related differences in muscle structure. However, in response to physical exercise, glucose and fatty acid oxidation were stimulated, lactate dehydrogenase activity was reduced, and lactate formation was inhibited in the marathon mice compared with trained control mice. The lack of lactate formation in response to exercise appears to be associated with increased lipid mobilization from peripheral adipose tissue in DUhTP mice, suggesting a specific benefit of lactate avoidance. Thus, results from the analysis of muscle metabolism in born marathon mice, shaped by 35 years (140 generations) of phenotype selection for superior running performance, suggest increased metabolic flexibility in male marathon mice toward lipid catabolism regulated by lactate dehydrogenase.


Asunto(s)
L-Lactato Deshidrogenasa , Músculos , Condicionamiento Físico Animal , Animales , Masculino , Ratones , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Redes y Vías Metabólicas , Músculos/metabolismo
4.
Evol Appl ; 16(6): 1135-1153, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37360029

RESUMEN

Recent advances in the selective breeding of broilers and layers have made poultry production one of the fastest-growing industries. In this study, a transcriptome variant calling approach from RNA-seq data was used to determine population diversity between broilers and layers. In total, 200 individuals were analyzed from three different chicken populations (Lohmann Brown (LB), n = 90), Lohmann Selected Leghorn (LSL, n = 89), and Broiler (BR, n = 21). The raw RNA-sequencing reads were pre-processed, quality control checked, mapped to the reference genome, and made compatible with Genome Analysis ToolKit for variant detection. Subsequently, pairwise fixation index (F ST) analysis was performed between broilers and layers. Numerous candidate genes were identified, that were associated with growth, development, metabolism, immunity, and other economically significant traits. Finally, allele-specific expression (ASE) analysis was performed in the gut mucosa of LB and LSL strains at 10, 16, 24, 30, and 60 weeks of age. At different ages, the two-layer strains showed significantly different allele-specific expressions in the gut mucosa, and changes in allelic imbalance were observed across the entire lifespan. Most ASE genes are involved in energy metabolism, including sirtuin signaling pathways, oxidative phosphorylation, and mitochondrial dysfunction. A high number of ASE genes were found during the peak of laying, which were particularly enriched in cholesterol biosynthesis. These findings indicate that genetic architecture as well as biological processes driving particular demands relate to metabolic and nutritional requirements during the laying period shape allelic heterogeneity. These processes are considerably affected by breeding and management, whereby elucidating allele-specific gene regulation is an essential step towards deciphering the genotype to phenotype map or functional diversity between the chicken populations. Additionally, we observed that several genes showing significant allelic imbalance also colocalized with the top 1% of genes identified by the FST approach, suggesting a fixation of genes in cis-regulatory elements.

5.
Sci Adv ; 9(18): eade1204, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134160

RESUMEN

A comprehensive characterization of regulatory elements in the chicken genome across tissues will have substantial impacts on both fundamental and applied research. Here, we systematically identified and characterized regulatory elements in the chicken genome by integrating 377 genome-wide sequencing datasets from 23 adult tissues. In total, we annotated 1.57 million regulatory elements, representing 15 distinct chromatin states, and predicted about 1.2 million enhancer-gene pairs and 7662 super-enhancers. This functional annotation of the chicken genome should have wide utility on identifying regulatory elements accounting for gene regulation underlying domestication, selection, and complex trait regulation, which we explored. In short, this comprehensive atlas of regulatory elements provides the scientific community with a valuable resource for chicken genetics and genomics.


Asunto(s)
Pollos , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Pollos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genómica , Cromatina , Genoma , Elementos de Facilitación Genéticos
6.
J Dairy Sci ; 106(7): 4682-4697, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37173253

RESUMEN

Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/química , Lactancia/genética , Urea/análisis , ARN Ribosómico 16S/genética , Dieta/veterinaria , Nitrógeno/análisis , Genómica , Rumen/química , Alimentación Animal/análisis
7.
Poult Sci ; 102(1): 102256, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335740

RESUMEN

Aggregation of data, including deep sequencing of mRNA and miRNA data in jejunum mucosa, abundance of immune cells, metabolites, or hormones in blood, composition of microbiota in digesta and duodenal mucosa, and production traits collected along the lifespan, provides a comprehensive picture of lifelong adaptation processes. Here, respective data from two laying hen strains (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) collected at 10, 16, 24, 30, and 60 wk of age were analyzed. Data integration revealed strain- and stage-specific biosignatures, including elements indicative of molecular pathways discriminating the strains. Although the strains performed the same, they differed in the activity of immunological and metabolic functions and pathways and showed specific gut-microbiota-interactions in different production periods. The study shows that both strains employ different strategies to acquire and maintain their capabilities under high performance conditions, especially during the transition phase. Furthermore, the study demonstrates the capacity of such integrative analyses to elucidate molecular pathways that reflect functional biodiversity. The bioinformatic reduction of the multidimensional data provides good guidance for further manual review of the data.


Asunto(s)
Microbioma Gastrointestinal , Animales , Femenino , Pollos/fisiología , Peso Corporal
8.
Front Genet ; 14: 1267053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327702

RESUMEN

Post calving metabolic stress reduces the fertility of high producing dairy cows possibly by altering the expression of genes in the maternal environment via epigenetic modifications. Therefore, this study was conducted to identify endometrial DNA methylation marks that can be associated with pregnancy outcomes in postpartum cows at the time of breeding. For this, twelve days post-calving, cows were either offered a control diet or supplemented daily with rumen-protected methionine. Cows showing heat 50-64 days postpartum were artificially inseminated. Endometrial cytobrush samples were collected 4-8 h after artificial insemination and classified based on the pregnancy out comes as those derived from cows that resulted in pregnancy or resulted in no pregnancy. The DNAs isolated from endometrial samples were then subject to reduced representative bisulfite sequencing for DNA methylation analysis. Results showed that in the control diet group, 1,958 differentially methylated CpG sites (DMCGs) were identified between cows that resulted in pregnancy and those that resulted in no pregnancy of which 890 DMCGs were located on chr 27: 6217254-6225600 bp. A total of 537 DMCGs were overlapped with 313 annotated genes that were involved in various pathways including signal transduction, signalling by GPCR, aldosterone synthesis and secretion. Likewise, in methionine supplemented group, 3,430 CpG sites were differentially methylated between the two cow groups of which 18.7% were located on Chr27: 6217254-6225600 bp. A total of 1,781 DMCGS were overlapped with 890 genes which involved in developmental and signalling related pathways including WNT-signalling, focal adhesion and ECM receptor interaction. Interestingly, 149 genes involved in signal transduction, axon guidance and non-integrin membrane-ECM interactions were differentially methylated between the two cow groups irrespective of their feeding regime, while 453 genes involved in axon guidance, notch signalling and collagen formation were differentially methylated between cows that received rumen protected methionine and control diet irrespective of their fertility status. Overall, this study indicated that postpartum cows that could potentially become pregnant could be distinguishable based on their endometrial DNA methylation patterns at the time of breeding.

9.
Endocrinology ; 164(1)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36269722

RESUMEN

Preimplantation maternal stress, characterized by elevated glucocorticoids (GCs), has been linked to reproductive failures caused by impaired oviduct functionality, which is known to be predominantly regulated by the sex steroids, progesterone (P4) and (17)estradiol (E2). Although steroid receptors share analogous structures and binding preferences, the interaction between GCs and E2/P4 in the oviduct has attracted little attention. Using an air-liquid interface culture model, porcine oviduct epithelial cells were stimulated with single (cortisol, E2, P4) or hormone mixtures (cortisol/E2, cortisol/P4) for 12 hours and 72 hours. Cultures were subsequently assessed for epithelial morphometry, bioelectrical properties, and gene expression responses (steroid hormone signaling, oviductal function, immune response, and apoptosis). Results confirmed the suppressive role of P4 in regulating oviduct epithelium characteristics, which was partially opposed by E2. Besides increasing the ratio of ciliated cells, cortisol antagonized the effect of P4 on epithelial polarity and modified sex steroid-induced changes in transepithelial electrical properties. Both sex steroids affected the glucocorticoid receptor expression, while cortisol downregulated the expression of progesterone receptor. The overall gene expression pattern suggests that sex steroid dominates the cotreatment, but cortisol contributes by altering the gene responses to sex steroids. We conclude that besides its individual action, maternal cortisol interplays with sex steroids at phenotypic and molecular levels in the oviduct epithelium, thereby influencing the microenvironment of gametes and early embryos.


Asunto(s)
Estradiol , Progesterona , Femenino , Humanos , Porcinos , Animales , Progesterona/farmacología , Progesterona/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Hidrocortisona/farmacología , Hidrocortisona/metabolismo , Epitelio , Oviductos
10.
Front Microbiol ; 13: 939711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177471

RESUMEN

Efforts to reduce nitrogen (N) emissions are currently based on the optimization of dietary- N supply at average herd N requirements. The implementation of the considerable individual differences and predispositions in N- use efficiency and N- excretion in breeding programs is hampered by the difficulty of data collection. Cow individual milk urea (MU) concentration has been proposed as an easy-to-measure surrogate trait, but recent studies questioned its predictive power. Therefore, a deeper understanding of the biological mechanisms underlying predisposed higher (HMUg) or lower (LMUg) MU concentration in dairy cows is needed. Considering the complex N- metabolism in ruminants, the distinction between HMUg and LMUg could be based on differences in (i) the rumen microbial community, (ii) the host-specific transcription processes in the rumen villi, and (iii) the host-microbe interaction in the rumen. Therefore, rumen fluid and rumen epithelial samples from 10 HMUg and 10 LMUg cows were analyzed by 16S sequencing and HiSeq sequencing. In addition, the effect of dietary-N reduction on ruminal shifts was investigated in a second step. In total, 10 differentially abundant genera (DAG) were identified between HMUg and LMUg cows, elucidating greater abundances of ureolytic Succinivibrionaceae_UCG-002 and Ruminococcaceae_unclassified in LMUg animals and enhanced occurrences of Butyvibrio in HMUg cows. Differential expression analysis revealed genes of the bovine Major Histocompatibility Complex (BOLA genes) as well as MX1, ISG15, and PRSS2 displaying candidates of MU predisposition that further attributed to enhanced immune system activities in LMUg cows. A number of significant correlations between microbial genera and host transcript abundances were uncovered, including strikingly positive correlations of BOLA-DRA transcripts with Roseburia and Lachnospiraceae family abundances that might constitute particularly prominent microbial-host interplays of MU predisposition. The reduction of feed-N was followed by 18 DAG in HMUg and 19 DAG in LMUg, depicting pronounced interest on Shuttleworthia, which displayed controversial adaption in HMUg and LMUg cows. Lowering feed-N further elicited massive downregulation of immune response and energy metabolism pathways in LMUg. Considering breeding selection strategies, this study attributed information content to MU about predisposed ruminal N-utilization in Holstein-Friesians.

11.
Sci Rep ; 12(1): 16293, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175587

RESUMEN

Epigenetic dynamics are essential for reconciling stress-induced responses in neuro-endocrine routes between the limbic brain and adrenal gland. CpG methylation associates with the initiation and end of regulatory mechanisms underlying responses critical for survival, and learning. Using Reduced Representation Bisulfite Sequencing, we identified methylation changes of functional relevance for mediating tissue-specific responses in the hippocampus, amygdala, hypothalamus, and adrenal gland in pigs. We identified 4186 differentially methylated CpGs across all tissues, remarkably, enriched for promoters of transcription factors (TFs) of the homeo domain and zinc finger classes. We also detected 5190 differentially methylated regions (DMRs, 748 Mb), with about half unique to a single pairwise. Two structures, the hypothalamus and the hippocampus, displayed 860 unique brain-DMRs, with many linked to regulation of chromatin, nervous development, neurogenesis, and cell-to-cell communication. TF binding motifs for TFAP2A and TFAP2C are enriched amount DMRs on promoters of other TFs, suggesting their role as master regulators, especially for pathways essential in long-term brain plasticity, memory, and stress responses. Our results reveal sets of TF that, together with CpG methylation, may serve as regulatory switches to modulate limbic brain plasticity and brain-specific molecular genetics in pigs.


Asunto(s)
Metilación de ADN , Plasticidad Neuronal , Animales , Cromatina/genética , Hipocampo , Plasticidad Neuronal/genética , Regiones Promotoras Genéticas , Porcinos
12.
Open Biol ; 12(9): 220151, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36102059

RESUMEN

The metabolic changes associated with intrauterine growth restriction (IUGR) particularly affect the liver, which is a central metabolic organ and contributes significantly to the provision of energy and specific nutrients and metabolites. Therefore, our aim was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs, as well as the metabolome in fetal liver tissue in IUGR compared to appropriate for gestational age groups (AGA). Discordant siblings representing the extremes in fetal weight at day 63 post conception (dpc) were selected from F2 fetuses of a cross of German Landrace and Pietrain. Most of the changes in the liver of IUGR at midgestation involved various lipid metabolic pathways, both on transcript and metabolite levels, especially in the category of sphingolipids and phospholipids. Differentially expressed miRNAs, such as miR-34a, and their differentially expressed mRNA targets were identified. Sex-specific phenomena were observed at both the transcript and metabolite levels, particularly in male. This suggests that sex-specific adaptations in the metabolic system occur in the liver during midgestation (63 dpc). Our multi-omics network analysis reveals interactions and changes in the metabolic system associated with IUGR and identified an important biosignature that differs between IUGR and AGA piglets.


Asunto(s)
Retardo del Crecimiento Fetal , MicroARNs , Animales , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Edad Gestacional , Humanos , Hígado/metabolismo , Masculino , Metabolómica , Embarazo , Porcinos
13.
Cancers (Basel) ; 14(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139627

RESUMEN

Kirsten rat sarcoma virus (KRAS) mutations are widespread in pancreatic ductal adenocarcinoma (PDAC) and contribute significantly to tumor initiation, progression, tumor relapse/resistance, and prognosis of patients. Although inhibitors against KRAS mutations have been developed, this therapeutic approach is not routinely used in PDAC patients. We investigated the anti-tumor efficacy of two KRAS inhibitors BI-3406 (KRAS::SOS1 inhibitor) and sotorasib (KRAS G12C inhibitor) alone or in combination with MEK1/2 inhibitor trametinib and/or PI3K inhibitor buparlisib in seven PDAC cell lines. Whole transcriptomic analysis of combined inhibition and control groups were comparatively analyzed to explore the corresponding mechanisms of inhibitor combination. Both KRAS inhibitors and corresponding combinations exhibited cytotoxicity against specific PDAC cell lines. BI-3406 enhance the efficacy of trametinib and buparlisib in BXPC-3, ASPC-1 and MIA PACA-2, but not in CAPAN-1, while sotorasib enhances the efficacy of trametinib and buparlisib only in MIA PACA-2. The whole transcriptomic analysis demonstrates that the two triple-inhibitor combinations exert antitumor effects by affecting related cell functions, such as affecting the immune system, cell adhesion, cell migration, and cytokine binding. As well as directly involved in RAF/MEK/ERK pathway and PI3K/AKT pathway affect cell survival. Our current study confirmed inhibition of KRAS and its downstream pathways as a potential novel therapy for PDAC and provides fundamental data for in vivo evaluations.

14.
Front Cell Dev Biol ; 10: 880779, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912111

RESUMEN

The plasticity of sexual phenotype in response to environmental conditions results in biased sex ratios, and their variation has an effect on population dynamics. Epigenetic modifications can modulate sex ratio variation in species, where sex is determined by genetic and environmental factors. However, the role of epigenetic mechanisms underlying skewed sex ratios is far from being clear and is still an object of debate in evolutionary developmental biology. In this study, we used zebrafish as a model animal to investigate the effect of DNA methylation on sex ratio variation in sex-biased families in response to environmental temperature. Two sex-biased families with a significant difference in sex ratio were selected for genome-wide DNA methylation analysis using reduced representation bisulfite sequencing (RRBS). The results showed significant genome-wide methylation differences between male-biased and female-biased families, with a greater number of methylated CpG sites in testes than ovaries. Likewise, pronounced differences between testes and ovaries were identified within both families, where the male-biased family exhibited a higher number of methylated sites than the female-biased family. The effect of temperature showed more methylated positions in the high incubation temperature than the control temperature. We found differential methylation of many reproduction-related genes (e.g., sox9a, nr5a2, lhx8a, gata4) and genes involved in epigenetic mechanisms (e.g., dnmt3bb.1, dimt1l, hdac11, h1m) in both families. We conclude that epigenetic modifications can influence the sex ratio variation in zebrafish families and may generate skewed sex ratios, which could have a negative consequence for population fitness in species with genotype-environment interaction sex-determining system under rapid environmental changes.

15.
Sci Rep ; 12(1): 14748, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042230

RESUMEN

A growing body of evidence shows that microRNA (miRNA), play important roles in regulating adipose tissue (AT) physiology and function. The objective was to characterize the AT miRNA profile in over-conditioned (HBCS, n = 19) versus moderate-conditioned (MBCS, n = 19) periparturient dairy cows. Tail-head subcutaneous AT biopsied on d -49 and 21 relative to parturition were used for miRNA sequencing. The miR-486 was the most significant miRNA among the upregulated miRNA on d -49, which might be related to more pronounced changes in lipogenesis and altered insulin sensitivity in AT of HBCS cows at dry-off. Comparing HBCS to MBCS on d 21, 23 miRNA were downregulated and 20 were upregulated. The predicted targets of upregulated differentially expressed (DE)-miRNA on d 21 were enriched in different pathways, including pathways related to lysosomes and peroxisomes. The predicted targets of downregulated DE-miRNA on d 21 were enriched in various pathways, including epidermal growth factor receptor, insulin resistance, hypoxia-inducible factor 1 signaling pathway, and autophagy. The results showed that over-conditioning was associated with changes in SCAT miRNA profile mainly on d 21, of which most were downregulated. The enriched pathways may participate in over-conditioning-associated metabolic challenges during early lactation.


Asunto(s)
Resistencia a la Insulina , MicroARNs , Tejido Adiposo/metabolismo , Animales , Bovinos , Dieta/veterinaria , Femenino , Humanos , Lactancia/genética , MicroARNs/genética , MicroARNs/metabolismo , Parto/fisiología , Periodo Posparto/metabolismo , Embarazo , Grasa Subcutánea/metabolismo
16.
Biol Sex Differ ; 13(1): 24, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550009

RESUMEN

BACKGROUND: Impaired skeletal muscle growth in utero can result in reduced birth weight and pathogenesis of intrauterine growth restriction. Fetal and placental growth is influenced by many factors including genetic, epigenetic and environmental factors. In fact, the sex and genotype of the fetus itself, as well as the mother providing it with a suitable environment, influence the growth of the fetus. Hence, our goal was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs in fetal muscle tissue in the context of sex, dam, and fetal weight. Therefore, we analyse the variation of miRNA and mRNA expression in relation to these factors. In addition, the coincidence of genetic regulation of these mRNAs and miRNAs, as revealed by expression quantitative trait loci (eQTL) analyses, with sex-, mother- and weight-associated expression was investigated. METHODS: A three-generation pig F2 population (n = 118) based on reciprocal crossing of German Landrace (DL) and Pietrain (Pi) was used. Genotype information and transcriptomic data (mRNA and miRNA) from longissimus dorsi muscle (LDM) of pig fetuses sampled at 63 days post-conception (dpc) were used for eQTL analyses. RESULTS: The transcript abundances of 13, 853, and 275 probe-sets were influenced by sex, dam and fetal weight at 63 dpc, respectively (FDR < 5%). Most of significant transcripts affected by sex were located on the sex chromosomes including KDM6A and ANOS1 or autosomes including ANKS1B, LOC100155138 and miR-153. The fetal muscle transcripts associated with fetal weight indicated clearer metabolic directions than maternally influenced fetal muscle transcripts. Moreover, coincidence of genetic regulation (eQTL) and variation in transcript abundance due to sex, dam and fetal weight were identified. CONCLUSIONS: Integrating information on eQTL, sex-, dam- and weight-associated differential expression and QTL for fetal weight allowed us to identify molecular pathways and shed light on the basic biological processes associated with differential muscle development in males and females, with implications for adaptive fetal programming.


Asunto(s)
MicroARNs , Animales , Femenino , Peso Fetal , Feto , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos
17.
Front Genet ; 13: 858232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432452

RESUMEN

Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially important laying hen strains due to their high egg production and excellent commercial suitability. The present study integrated multiple data sets along the genotype-phenotype map to better understand how the genetic background of the two strains influences their molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune cells, inositol phosphate metabolites, minerals, and hormones from different organs of the two hen strains. All complex data sets were pre-processed, normalized, and compatible with the mixOmics platform. The most discriminant features between two laying strains included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and 16 metabolites. The expression of specific miRNAs and the abundance of immune cell types were related to the enrichment of immune pathways in the LSL strain. In contrast, more microbial taxa specific to the LB strain were identified, and the abundance of certain microbes strongly correlated with host gut transcripts enriched in immunological and metabolic pathways. Our findings indicate that both strains employ distinct inherent strategies to acquire and maintain their immune and metabolic systems under high-performance conditions. In addition, the study provides a new perspective on a view of the functional biodiversity that emerges during strain selection and contributes to the understanding of the role of host-gut interaction, including immune phenotype, microbiota, gut transcriptome, and metabolome.

18.
Front Vet Sci ; 9: 839860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411305

RESUMEN

Conjugated linoleic acids (CLAs) modulate the fatty acid composition in dairy cow milk, which represents the most important nutrient source of neonatal calves. In turn, dietary fatty acids are known to influence the gut microbiota. The current preliminary study investigated effects of a maternal fatty acid supplementation (MFAS) during transition period with coconut oil (CON, control), CLA (Lutalin®), or CLA + EFA (Lutalin® + essential fatty acids-linseed oil; safflower oil) on physico-chemical characteristics of jejunal content and microbiota of 5-day-old calves. MFAS of CLA + EFA increased α-linolenic, eicosapentaenoic, docosapentaenoic, and n-3 fatty acid proportions in jejunum compared to the other groups (P < 0.05). Proportions of n-6 and polyunsaturated fatty acids increased by MFAS of CLA + EFA compared to CON (P < 0.05). Most abundant phyla in the jejunum were Proteobacteria, Firmicutes, and Bacteroidota. CLA + EFA decreased the relative abundance of Diplorickettsiales (Proteobacteria) compared to CON and CLA (P < 0.05). CLA calves showed a lower abundance of Enterobacterales (Proteobacteria) compared to CON calves (P = 0.001). The abundance of Veillonellales-Selenomonadales and RF39 (Firmicutes) decreased in CLA + EFA calves compared to CON calves (P < 0.05). Bacteroidales (Bacteroidota) decreased in CLA + EFA calves compared to CLA calves (P < 0.05). The relative abundance of Cyanobacteria and Euryarchaeota decreased and the abundance of Chloroflexi increased in CLA + EFA calves compared to CON and CLA calves (P < 0.05). MFAS alters the fatty acid composition and microbial milieu in the intestinal content of neonatal calves due to their ability to modulate colostral fatty acid composition of dams.

19.
Neuroendocrinology ; 112(3): 235-251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33853082

RESUMEN

BACKGROUND: Glucocorticoid (GC) receptor (GR) signaling in the hypothalamus (Hyp) and in the superordinate limbic structures, such as the hippocampus (Hip), conveys feedback regulation of the neuroendocrine stress response and acts upon other neurobiological functions that ultimately influence mental health. These responses are strongly influenced by sex, but the molecular causes are still largely unexplored. METHODS: To investigate GR targets and their GC sensitivity in the Hyp and Hip, we treated juvenile male and female piglets with 10 (D10) or 60 (D60) µg/kg dexamethasone (DEX), a selective GR agonist, and analyzed transcriptome responses compared to a saline control group using RNA sequencing. RESULTS: Both doses influenced similar biological functions, including cellular response to lipid and immune cell-related functions, but the transcriptional response to D10 was considerably weaker, particularly in the Hip. Weighted Gene Co-expression Network Analysis revealed a network of genes coordinately regulated by DEX in both structures, among which the alpha-arrestin ARRDC2 takes a central position. Distinct functional groups of genes were differentially regulated by DEX between sexes depending on the dose; at D10, these included particularly mitochondrial genes, whereas at D60 interferon signaling and lipid homeostasis genes were enriched. The general and sex-specific transcriptional responses to DEX highlight microglia as the prominent target. Several key marker genes of disease-associated microglia were regulated by DEX depending on sex, such as TREM2 and LPL. CONCLUSION: The discovered expression signatures suggest that DEX induced a dysfunctional state of microglia in males, while in females microglia were primed, which could entail predisposition for different mental disorders.


Asunto(s)
Dexametasona , Transcriptoma , Animales , Dexametasona/farmacología , Femenino , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Hipocampo/metabolismo , Humanos , Masculino , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Porcinos
20.
Sci Total Environ ; 807(Pt 3): 151019, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662617

RESUMEN

Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.


Asunto(s)
Membrana Celular/química , Ácidos Grasos , Mioblastos/citología , Temperatura , Animales , Línea Celular , Ácidos Grasos/química , Metabolismo de los Lípidos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...