Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1336308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344749

RESUMEN

The mechanism underlying the differentiation of the dorsal midbrain into two morphologically and functionally distinct compartments, the inferior colliculus (IC) and superior colliculus (SC), which process auditory and visual information, respectively, remains largely unexplored. By using null and conditional alleles, we uncover the roles of a homeodomain transcription factor Dbx1 in the regulation of IC and SC differentiation. We show that Dbx1 regulates GABAergic neuron development in the dorsal midbrain. In the absence of Dbx1 function, the dorsal-most m1-m2 progenitor domains in the midbrain fail to activate GABAergic neuron-specific gene expression and instead switch to a glutamatergic phenotype. These results identify Dbx1 as a dorsal midbrain-specific GABAergic determinant that regulates the selector genes, Helt, Gata2, and Tal2. Furthermore, we demonstrate that maturation of the dorsal midbrain into the IC and SC is dependent on Dbx1. Null mutation of Dbx1 impairs the identity and fate of IC and SC neurons. Surprisingly, Dbx1 is required for preventing IC into SC fate switch and thus Dbx1-deficient IC neurons undergo acquisition of SC identity. Conditional inactivation of Dbx1 at late developmental phase leads to alteration in the identity and fate of the IC, but not the SC. These results suggest that SC differentiation is dependent on the early function of Dbx1, and that the IC requires the prolonged action for its normal formation. Furthermore, we uncover that Tcf7l2 acts downstream of Dbx1 selectively to promote IC differentiation. Altogether, our study identifies a molecular mechanism underlying spatial and temporal control of dorsal midbrain development.

2.
Cell Death Differ ; 30(6): 1563-1574, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37081114

RESUMEN

At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival. We find that Dbx1 plays a critical role in preventing apoptotic cell death in postnatal IC by transcriptionally repressing c-Jun and pro-apoptotic BH3 only factors. Furthermore, by employing combined approaches, we uncover that Tcf7l2 functions downstream of Dbx1. Loss of Tcf7l2 function causes IC phenotypes with striking similarity to those of Dbx1 mutant mice, which include defective embryonic maturation and postnatal deletion of the IC. Finally, we demonstrate that the Dbx1-Tcf7l2 cascade functions upstream of Ap-2δ, which is essential for IC development and survival. Together, these results unravel a novel molecular mechanism for IC maintenance, which is indispensable for normal brain development.


Asunto(s)
Colículos Inferiores , Mesencéfalo , Animales , Ratones , Proteínas de Homeodominio/metabolismo , Colículos Inferiores/metabolismo , Mesencéfalo/metabolismo , Neuronas/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
3.
iScience ; 23(8): 101390, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32745990

RESUMEN

Photoelectrochemical CO2 reduction into syngas (a mixture of CO and H2) provides a promising route to mitigate greenhouse gas emissions and store intermittent solar energy into value-added chemicals. Design of photoelectrode with high energy conversion efficiency and controllable syngas composition is of central importance but remains challenging. Herein, we report a decoupling strategy using dual cocatalysts to tackle the challenge based on joint computational and experimental investigations. Density functional theory calculations indicate the optimization of syngas generation using a combination of fundamentally distinctive catalytic sites. Experimentally, by integrating spatially separated dual cocatalysts of a CO-generating catalyst and a H2-generating catalyst with GaN nanowires on planar Si photocathode, we report a record high applied bias photon-to-current efficiency of 1.88% and controllable syngas products with tunable CO/H2 ratios (0-10) under one-sun illumination. Moreover, unassisted solar CO2 reduction with a solar-to-syngas efficiency of 0.63% is demonstrated in a tandem photoelectrochemical cell.

4.
Dev Dyn ; 249(5): 646-655, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31872525

RESUMEN

BACKGROUND: Dysfunction of GABAergic and glutamatergic neurons in the brain, which establish inhibitory and excitatory networks, respectively, may cause diverse neurological disorders. The mechanism underlying the determination of GABAergic vs. glutamatergic neurotransmitter phenotype in the caudal diencephalon remains largely unknown. RESULTS: In this study, we investigated the consequence of Tcf7l2 (transcription factor 7-like 2) ablation on the neurotransmitter identity of GABAergic and glutamatergic neurons in the caudal diencephalon. We identified positive and negative activity in the control of glutamatergic and GABAergic neuronal gene expression by Tcf7l2. Loss of Tcf7l2 did not alter the initial acquisition of the neurotransmitter identity in thalamic neurons. However, glutamatergic thalamic neurons failed to maintain their excitatory neurotransmitter phenotype in the absence of Tcf7l2. Moreover, a subset of Tcf7l2-deficient thalamic neurons underwent a glutamatergic to GABAergic neurotransmitter identity switch. Our data indicate that Tcf7l2 may promote glutamatergic neuronal differentiation and repress GABAergic neurotransmitter identity in the caudal thalamus. CONCLUSIONS: This study provides evidence for a novel and crucial role of Tcf7l2 in the molecular mechanism by which the neurotransmitter identity of glutamatergic thalamic neurons is established. Our findings exemplify a clear case of neurotransmitter identity regulation that is partitioned into initiation and maintenance phases.


Asunto(s)
Tálamo , Proteína 2 Similar al Factor de Transcripción 7 , Diencéfalo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
5.
Nano Lett ; 17(6): 3738-3743, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28471682

RESUMEN

Aluminum-rich AlGaN is the ideal material system for emerging solid-state deep-ultraviolet (DUV) light sources. Devices operating in the near-UV spectral range have been realized; to date, however, the achievement of high-efficiency light-emitting diodes (LEDs) operating in the UV-C band (200-280 nm specifically) has been hindered by the extremely inefficient p-type conduction in AlGaN and the lack of DUV-transparent conductive electrodes. Here, we show that these critical challenges can be addressed by Mg dopant-free Al(Ga)N/h-BN nanowire heterostructures. By exploiting the acceptor-like boron vacancy formation, we have demonstrated that h-BN can function as a highly conductive, DUV-transparent electrode; the hole concentration is ∼1020 cm-3 at room temperature, which is 10 orders of magnitude higher than that previously measured for Mg-doped AlN epilayers. We have further demonstrated the first Al(Ga)N/h-BN LED, which exhibits strong emission at ∼210 nm. This work also reports the first achievement of Mg-free III-nitride LEDs that can exhibit high electrical efficiency (80% at 20 A/cm2).

6.
Nanotechnology ; 24(32): 325501, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23863331

RESUMEN

We present a novel technique to remotely measure and control the local temperature within a medium. This technique is based on the observation of the rotational Brownian motion of gold nanocrescent particles, which possess a strong anisotropic light interaction due to their plasmonic properties. Rotational scattering correlation spectroscopy performed on a single nanoparticle is able to determine the local temperature with high accuracy. These nano-thermometers can simultaneously play the role of nano-heaters when absorbing the light of a focused laser beam.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...