Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 25(24): 4439-4444, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37306339

RESUMEN

Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Péptidos , Ligadura , Péptidos/química , Venenos de Araña/metabolismo , Venenos de Araña/farmacología , Accidente Cerebrovascular Isquémico/fisiopatología , Infarto del Miocardio/fisiopatología
2.
Bioconjug Chem ; 34(6): 1072-1083, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37262436

RESUMEN

Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker µ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.


Asunto(s)
Péptidos , Humanos , Péptidos/farmacología
3.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117223

RESUMEN

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Asunto(s)
Toxinas Biológicas , Urtica dioica , Australia , Dolor , Péptidos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
4.
Toxins (Basel) ; 14(9)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36136538

RESUMEN

µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.


Asunto(s)
Conotoxinas , Bloqueadores del Canal de Sodio Activado por Voltaje , Analgésicos/química , Analgésicos/farmacología , Animales , Conotoxinas/química , Conotoxinas/farmacología , Cisteína , Humanos , Canal de Sodio Activado por Voltaje NAV1.4 , Canal de Sodio Activado por Voltaje NAV1.7 , Péptidos , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
5.
J Med Chem ; 65(8): 6191-6206, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420805

RESUMEN

Inherent susceptibility of peptides to enzymatic degradation in the gastrointestinal tract is a key bottleneck in oral peptide drug development. Here, we present a systematic analysis of (i) the gut stability of disulfide-rich peptide scaffolds, orally administered peptide therapeutics, and well-known neuropeptides and (ii) medicinal chemistry strategies to improve peptide gut stability. Among a broad range of studied peptides, cyclotides were the only scaffold class to resist gastrointestinal degradation, even when grafted with non-native sequences. Backbone cyclization, a frequently applied strategy, failed to improve stability in intestinal fluid, but several site-specific alterations proved efficient. This work furthermore highlights the importance of standardized gut stability test conditions and suggests defined protocols to facilitate cross-study comparison. Together, our results provide a comparative overview and framework for the chemical engineering of gut-stable peptides, which should be valuable for the development of orally administered peptide therapeutics and molecular probes targeting receptors within the gastrointestinal tract.


Asunto(s)
Ciclotidas , Secuencia de Aminoácidos , Ciclización , Ciclotidas/química
6.
J Biol Chem ; 298(3): 101728, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35167877

RESUMEN

µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.


Asunto(s)
Conotoxinas , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje , Conotoxinas/química , Conotoxinas/farmacología , Disulfuros/química , Disulfuros/farmacología , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
7.
Bioconjug Chem ; 32(11): 2407-2419, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34751572

RESUMEN

Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two NaV1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNaV1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.


Asunto(s)
Disulfuros
8.
Toxins (Basel) ; 13(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34437426

RESUMEN

α-conotoxins are 13-19 amino acid toxin peptides that bind various nicotinic acetylcholine receptor (nAChR) subtypes. α-conotoxin Mr1.7c (MrIC) is a 17 amino acid peptide that targets α7 nAChR. Although MrIC has no activating effect on α7 nAChR when applied by itself, it evokes a large response when co-applied with the type II positive allosteric modulator PNU-120596, which potentiates the α7 nAChR response by recovering it from a desensitized state. A lack of standalone activity, despite activation upon co-application with a positive allosteric modulator, was previously observed for molecules that bind to an extracellular domain allosteric activation (AA) site at the vestibule of the receptor. We hypothesized that MrIC may activate α7 nAChR allosterically through this site. We ran voltage-clamp electrophysiology experiments and in silico peptide docking calculations in order to gather evidence in support of α7 nAChR activation by MrIC through the AA site. The experiments with the wild-type α7 nAChR supported an allosteric mode of action, which was confirmed by the significantly increased MrIC + PNU-120596 responses of three α7 nAChR AA site mutants that were designed in silico to improve MrIC binding. Overall, our results shed light on the allosteric activation of α7 nAChR by MrIC and suggest the involvement of the AA site.


Asunto(s)
Conotoxinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Femenino , Simulación del Acoplamiento Molecular , Mutación , Oocitos , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/genética
9.
J Med Chem ; 64(13): 9484-9495, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34142550

RESUMEN

TFF3 regulates essential gastro- and neuroprotective functions, but its molecular mode of action remains poorly understood. Synthetic intractability and lack of reliable bioassays and validated receptors are bottlenecks for mechanistic and structure-activity relationship studies. Here, we report the chemical synthesis of TFF3 and its homodimer via native chemical ligation followed by oxidative folding. Correct folding was confirmed by NMR and circular dichroism, and TFF3 and its homodimer were not cytotoxic or hemolytic. TFF3, its homodimer, and the trefoil domain (TFF310-50) were susceptible to gastrointestinal degradation, revealing a gut-stable metabolite (TFF37-54; t1/2 > 24 h) that retained its trefoil structure and antiapoptotic bioactivity. We tried to validate the putative TFF3 receptors CXCR4 and LINGO2, but neither TFF3 nor its homodimer displayed any activity up to 10 µM. The discovery of a gut-stable bioactive metabolite and reliable synthetic accessibility to TFF3 and its analogues are cornerstones for future molecular probe development and structure-activity relationship studies.


Asunto(s)
Factor Trefoil-3/síntesis química , Factor Trefoil-3/metabolismo , Fenómenos Biofísicos , Células HEK293 , Humanos , Estructura Molecular , Oxidación-Reducción , Pliegue de Proteína , Relación Estructura-Actividad , Factor Trefoil-3/química
10.
J Med Chem ; 64(12): 8384-8390, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33979161

RESUMEN

High susceptibility to proteolytic degradation in the gastrointestinal tract limits the therapeutic application of peptide drugs in gastrointestinal disorders. Linaclotide is an orally administered peptide drug for the treatment of irritable bowel syndrome with constipation (IBS-C) and abdominal pain. Linaclotide is however degraded in the intestinal environment within 1 h, and improvements in gastrointestinal stability might enhance its therapeutic application. We therefore designed and synthesized a series of linaclotide analogues employing a variety of strategic modifications and evaluated their gastrointestinal stability and pharmacological activity at its target receptor guanylate cyclase-C. All analogues had substantial improvements in gastrointestinal half-lives (>8 h vs linaclotide 48 min), and most remained active at low nanomolar concentrations. This work highlights strategic approaches for the development of gut-stable peptides toward the next generation of orally administered peptide drugs for the treatment of gastrointestinal disorders.


Asunto(s)
Fármacos Gastrointestinales/metabolismo , Agonistas de la Guanilato Ciclasa C/metabolismo , Péptidos/metabolismo , Línea Celular , Diseño de Fármacos , Estabilidad de Medicamentos , Fármacos Gastrointestinales/síntesis química , Agonistas de la Guanilato Ciclasa C/síntesis química , Humanos , Péptidos/síntesis química , Proteolisis
11.
Biomedicines ; 8(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023152

RESUMEN

Voltage-gated sodium (NaV) channel subtypes, including NaV1.7, are promising targets for the treatment of neurological diseases, such as chronic pain. Cone snail-derived µ-conotoxins are small, potent NaV channel inhibitors which represent potential drug leads. Of the 22 µ-conotoxins characterised so far, only a small number, including KIIIA and CnIIIC, have shown inhibition against human NaV1.7. We have recently identified a novel µ-conotoxin, SxIIIC, from Conus striolatus. Here we present the isolation of native peptide, chemical synthesis, characterisation of human NaV channel activity by whole-cell patch-clamp electrophysiology and analysis of the NMR solution structure. SxIIIC displays a unique NaV channel selectivity profile (1.4 > 1.3 > 1.1 ≈ 1.6 ≈ 1.7 > 1.2 >> 1.5 ≈ 1.8) when compared to other µ-conotoxins and represents one of the most potent human NaV1.7 putative pore blockers (IC50 152.2 ± 21.8 nM) to date. NMR analysis reveals the structure of SxIIIC includes the characteristic α-helix seen in other µ-conotoxins. Future investigations into structure-activity relationships of SxIIIC are expected to provide insights into residues important for NaV channel pore blocker selectivity and subsequently important for chronic pain drug development.

12.
J Biol Chem ; 295(15): 5067-5080, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32139508

RESUMEN

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Nocicepción/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Venenos de Araña/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Venenos de Escorpión/toxicidad
13.
Bioconjug Chem ; 31(1): 64-73, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31790574

RESUMEN

Disulfide-rich animal venom peptides targeting either the voltage-sensing domain or the pore domain of voltage-gated sodium channel 1.7 (NaV1.7) have been widely studied as drug leads and pharmacological probes for the treatment of chronic pain. However, despite intensive research efforts, the full potential of NaV1.7 as a therapeutic target is yet to be realized. In this study, using evolved sortase A, we enzymatically ligated two known NaV1.7 inhibitors-PaurTx3, a spider-derived peptide toxin that modifies the gating mechanism of the channel through interaction with the voltage-sensing domain, and KIIIA, a small cone snail-derived peptide inhibitor of the pore domain-with the aim of creating a bivalent inhibitor which could interact simultaneously with two noncompeting binding sites. Using electrophysiology, we determined the activity at NaV1.7, and to maximize potency, we systematically evaluated the optimal linker length, which was nine amino acids. Our optimized synthetic bivalent peptide showed improved channel affinity and potency at NaV1.7 compared to either PaurTx3 or KIIIA individually. This work shows that novel and improved NaV1.7 inhibitors can be designed by combining a pore blocker toxin and a gating modifier toxin to confer desired pharmacological properties from both the voltage sensing domain and the pore domain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/química , Péptidos/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Modelos Moleculares , Venenos de Moluscos/química , Venenos de Moluscos/farmacología , Caracoles/química , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...