Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39185517

RESUMEN

A portion of the genetic basis for many common autoimmune disorders has been uncovered by genome-wide association studies (GWAS), but GWAS do not reveal causal variants, effector genes, or the cell types impacted by disease-associated variation. We have generated 3D genomic datasets consisting of promoter-focused Capture-C, Hi-C, ATAC-seq, and RNA-seq and integrated these data with GWAS of 16 autoimmune traits to physically map disease-associated variants to the effector genes they likely regulate in 57 human cell types. These 3D maps of gene cis-regulatory architecture are highly powered to identify the cell types most likely impacted by disease-associated genetic variation compared to 1D genomic features, and tend to implicate different effector genes than eQTL approaches in the same cell types. Most of the variants implicated by these cis-regulatory architectures are highly trait-specific, but nearly half of the target genes connected to these variants are shared across multiple autoimmune disorders in multiple cell types, suggesting a high level of genetic diversity and complexity among autoimmune diseases that nonetheless converge at the level of target gene and cell type. Substantial effector gene sharing led to the common enrichment of similar biological networks across disease and cell types. However, trait-specific pathways representing potential areas for disease-specific intervention were identified. To test this, we pharmacologically validated squalene synthase, a cholesterol biosynthetic enzyme encoded by the FDFT1 gene implicated by our approach in MS and SLE, as a novel immunomodulatory drug target controlling inflammatory cytokine production by human T cells. These data represent a comprehensive resource for basic discovery of gene cis-regulatory mechanisms, and the analyses reported reveal mechanisms by which autoimmune-associated variants act to regulate gene expression, function, and pathology across multiple, distinct tissues and cell types.

2.
medRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39072016

RESUMEN

Recent genome-wide association studies (GWAS) have revealed shared genetic components among alcohol, opioid, tobacco and cannabis use disorders. However, the extent of the underlying shared causal variants and effector genes, along with their cellular context, remain unclear. We leveraged our existing 3D genomic datasets comprising high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq and RNA-seq across >50 diverse human cell types to focus on genomic regions that coincide with GWAS loci. Using stratified LD regression, we determined the proportion of genomewide SNP heritability attributable to the features assayed across our cell types by integrating recent GWAS summary statistics for the relevant traits: alcohol use disorder (AUD), tobacco use disorder (TUD), opioid use disorder (OUD) and cannabis use disorder (CanUD). Statistically significant enrichments (P<0.05) were observed in 14 specific cell types, with heritability reaching 9.2-fold for iPSC-derived cortical neurons and neural progenitors, confirming that they are crucial cell types for further functional exploration. Additionally, several pancreatic cell types, notably pancreatic beta cells, showed enrichment for TUD, with heritability enrichments up to 4.8-fold, suggesting genomic overlap with metabolic processes. Further investigation revealed significant positive genetic correlations between T2D with both TUD and CanUD (FDR<0.05) and a significant negative genetic correlation with AUD. Interestingly, after partitioning the heritability for each cell type's cis-regulatory elements, the correlation between T2D and TUD for pancreatic beta cells was greater (r=0.2) than the global genetic correlation value. Our study provides new genomic insights into substance use disorders and implicates cell types where functional follow-up studies could reveal causal variant-gene mechanisms underpinning these disorders.

3.
Cell Genom ; 4(5): 100556, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38697123

RESUMEN

The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.


Asunto(s)
Regiones no Traducidas 3' , Proteínas Reguladoras de la Apoptosis , Proteínas de la Membrana , Obesidad Infantil , Niño , Humanos , Regiones no Traducidas 3'/genética , Alelos , Diferenciación Celular/genética , Cromosomas Humanos Par 12/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Obesidad Infantil/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas de la Membrana/genética , Proteínas Reguladoras de la Apoptosis/genética
4.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37693606

RESUMEN

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

5.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662342

RESUMEN

The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.

6.
PLoS One ; 14(8): e0220894, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437187

RESUMEN

Transcriptional regulations exert a critical control of metabolic homeostasis. In particular, the nuclear receptors (NRs) are involved in regulating numerous pathways of the intermediate metabolism. The purpose of the present study was to explore in liver cells the interconnectedness between three of them, LXR, FXR, and PPARα, all three known to act on lipid and glucose metabolism, and also on inflammation. The human cell line HepaRG was selected for its best proximity to human primary hepatocytes. Global gene expression of differentiated HepaRG cells was assessed after 4 hours and 24 hours of exposure to GW3965 (LXR agonist), GW7647 (PPARα agonist), and GW4064 and CDCA (FXR synthetic and natural agonist, respectively). Our work revealed that, contrary to our expectations, NR specificity is largely present at the level of target genes, with a smaller than expected overlap of the set of genes targeted by the different NRs. It also highlighted the much broader activity of the synthetic FXR ligand compared to CDCA. More importantly, our results revealed that activation of FXR has a pro-proliferative effect and decreases the number of tetraploid (or binucleated) hepatocytes, while LXR inhibits the cell cycle progression, inducing hepatocyte differentiation and an increase in tetraploidism. Conclusion: these results highlight the importance of analyzing the different NR activities in a context allowing a direct confrontation of each receptor outcome, and reveals the opposite role of FXR and LXR in hepatocyte cells division and maturation.


Asunto(s)
Receptores X del Hígado/metabolismo , Receptor Cross-Talk/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Benzoatos , Bencilaminas , Butiratos , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Hepatocitos/metabolismo , Humanos , Isoxazoles , Hígado/patología , Receptores X del Hígado/inmunología , Receptores Nucleares Huérfanos/metabolismo , PPAR alfa/inmunología , PPAR alfa/metabolismo , Compuestos de Fenilurea , Regiones Promotoras Genéticas/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Análisis de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...