Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(7): 4768-4785, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38601779

RESUMEN

Recently, there has been a growing interest in using MOF templating to synthesize heterogeneous catalysts based on metal nanoparticles on carbonaceous supports. Unlike the common approach of direct pyrolysis of PdIn-MOFs at high temperatures, this work proposes a reductive chemical treatment under mild conditions before pyrolysis (resulting in PdIn-QT). The resulting material (PdIn-QT) underwent comprehensive characterization via state-of-the-art aberration-corrected electron microscopy, N2 physisorption, X-ray absorption spectroscopy, Raman, X-ray photoelectron spectroscopy, and X-ray diffraction. These analyses have proven the existence of PdIn bimetallic nanoparticles supported on N-doped carbon. In situ DRIFT spectroscopy reveals the advantageous role of indium (In) in regulating Pd activity in alkyne semihydrogenation. Notably, incorporating a soft nucleation step before pyrolysis enhances surface area, porosity, and nitrogen content compared to direct MOF pyrolysis. The optimized material exhibits outstanding catalytic performance with 96% phenylacetylene conversion and 96% selectivity to phenylethylene in the fifth cycle under mild conditions (5 mmol phenylacetylene, 7 mg cat, 5 mL EtOH, R.T., 1 H2 bar).

2.
ACS Nano ; 17(9): 8083-8097, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093765

RESUMEN

Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule ß-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of ß-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of ß-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.


Asunto(s)
Antioxidantes , beta Caroteno , beta Caroteno/química , Antioxidantes/farmacología , Fósforo/química , Oxidación-Reducción
3.
J Agric Food Chem ; 70(12): 3644-3653, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35289164

RESUMEN

The encapsulation of bioactive natural products has emerged as a relevant tool for modifying the poor physicochemical properties often exhibited by agrochemicals. In this regard, natural guaiane-type sesquiterpene lactones isolated from Cynara cardunculus L. have been encapsulated in a core/shell nanotube@agrochemical system. Monitoring of the F and O signals in marked sesquiterpenes confirmed that the compound is present in the nanotube cavity. These structures were characterized using scanning transmission electron microscopy-X-ray energy-dispersive spectrometry techniques, which revealed the spatial layout relationship and confirmed encapsulation of the sesquiterpene lactone derivative. In addition, biological studies were performed with aguerin B (1), cynaropicrin (2), and grosheimin (3) on the inhibition of germination, roots, and shoots in weeds (Phalaris arundinacea L., Lolium perenne L., and Portulaca oleracea L.). Encapsulation of lactones in nanotubes gives better results than those for the nonencapsulated compounds, thereby reinforcing the application of fully organic nanotubes for the sustainable use of agrochemicals in the future.


Asunto(s)
Cynara , Nanotubos , Cynara/química , Lactonas/química , Lactonas/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos de Guayano
4.
Nanoscale ; 14(15): 5716-5724, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35348133

RESUMEN

Probiotic bacteria were used as carriers of metallic nanoparticles to develop innovative oral agents for hyperthermia cancer therapy. Two synthetic strategies were used to produce the different therapeutic agents. First, the probiotic bacterium Lactobacillus fermentum was simultaneously loaded with magnetic (MNPs) and gold nanoparticles (AuNPs) of different morphologies to produce AuNP + MNP-bacteria systems with both types of nanoparticles arranged in the same layer of bacterial exopolysaccharides (EPS). In the second approach, the probiotic was first loaded with AuNP to form AuNP-bacteria and subsequently loaded with MNP-EPS to yield AuNP-bacteria-EPS-MNP with the MNP and AuNP arranged in two different EPS layers. This second strategy has never been reported and exploits the presence of EPS-EPS recognition which allows the layer-by-layer formation of structures on the bacteria external wall. The AuNP + MNP-bacteria and AuNP-bacteria-EPS-MNP samples were characterized by scanning (SEM) and transmission electron microscopy (TEM), and UV-vis spectroscopy. The potential of these two heterobimetallic systems as magnetic hyperthermia or photothermal therapy agents was assessed, validating their capacity to produce heat either during exposure to an alternating magnetic field or near-infrared laser light. The probiotic Lactobacillus fermentum has already been proposed as an oral drug carrier, able to overcome the stomach medium and deliver drugs to the intestines, and it is actually marketed as an oral supplement to reinforce the gut microbiota, thus, our results open the way for the development of novel therapeutic strategies using these new heterobimetallic AuNP/MNP-bacteria systems in the frame of gastric diseases, using them, for example, as oral agents for cancer treatment with magnetic hyperthermia and photothermal therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Probióticos , Bacterias , Oro/química , Humanos , Hipertermia , Campos Magnéticos , Nanopartículas del Metal/química
5.
ACS Appl Mater Interfaces ; 13(7): 7997-8005, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33577306

RESUMEN

Application of natural products as new green agrochemicals with low average lifetime, low concentration doses, and safety is both complex and expensive due to chemical modification required to obtain desirable physicochemical properties. Transport, aqueous solubility, and bioavailability are some of the properties that have been improved using functionalized metal-organic frameworks based on zinc for the encapsulation of bioherbicides (ortho-disulfides). An in situ method has been applied to achieve encapsulation, which, in turn, led to an improvement in water solubility by more than 8 times after 2-hydroxypropyl-ß-cyclodextrin HP-ß-CD surface functionalization. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and integrated differential phase contrast (iDPC) imaging techniques were employed to verify the success of the encapsulation procedure and crystallinity of the sample. Inhibition studies on principal weeds that infect rice, corn, and potato crops gave results that exceed those obtained with the commercial herbicide Logran. This finding, along with a short synthesis period, i.e., 2 h at 25 °C, make the product an example of a new generation of natural-product-based herbicides with direct applications in agriculture.


Asunto(s)
Agroquímicos/farmacología , Amaranthus/efectos de los fármacos , Echinochloa/efectos de los fármacos , Herbicidas/farmacología , Lolium/efectos de los fármacos , Estructuras Metalorgánicas/farmacología , Agroquímicos/síntesis química , Agroquímicos/química , Cápsulas/química , Cápsulas/farmacología , Disulfuros/química , Disulfuros/farmacología , Herbicidas/síntesis química , Herbicidas/química , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/química , Estructura Molecular , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie , Zinc/química , Zinc/farmacología
6.
RSC Adv ; 11(7): 4174-4185, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35424341

RESUMEN

Since silver nanowires (AgNWs) show high infrared reflectance many studies present their applicability as thermal management products for various wearable textiles. However, their use for practical purposes is only partially evaluated, without focusing on improving their low atmospheric and liquid stability. This report describes a new approach for the topic and proposes a facile method of Ag nanowire passivation with a SnO2 layer for high environmental stability and retention of high infrared reflectance. The one-step passivation process of AgNWs was carried out in the presence of sodium stannate in an aqueous solution at 100 °C, and resulted in the formation of core/shell Ag/SnO2 nanowires. This study presents the morphological, chemical, and structural properties of Ag/SnO2NWs formed with a 14 nm thick SnO2 shell, consisting of 7 nm rutile-type crystals, covering the silver metallic core. The optical properties of the AgNWs changed significantly after shell formation, and the longitudinal and transverse modes in the surface plasmon resonance spectrum were red shifted as a result of the surrounding media dielectric constant changes. The passivation process protected the AgNWs from decomposition in air for over 4 months, and from dissolution in a KCN solution at concentrations up to 0.1 wt%. Moreover, the report shows the microwave irradiation effect on the shell synthesis and previously synthesised Ag/SnO2NWs. The post-synthesis irradiation, as well as the SnO2 shell obtained by microwave assistance, did not allow long-term stability to be achieved. The microwave-assisted synthesis process was also not fast enough to inhibit the formation of prismatic silver structures from the nanowires. The Ag/SnO2NWs with a shell obtained by a simple hydrolysis process, apart from showing high infra-red reflectance on the para-aramid fabric, are highly environmentally stable. The presented SnO2 shell preparation method can protect the AgNW's surface from dissolution or decomposition and facilitate the designing of durable smart wearable thermal materials for various conditions.

7.
ACS Appl Mater Interfaces ; 11(45): 41925-41934, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31633337

RESUMEN

Agrochemical encapsulation agents used up to now are commonly based on polymeric compounds or metal particles, but the employment of other natural products such as host structures has not been tackled in detail. In the work reported here, fully organic nanotubes composed of human bile acid (lithocholic acid) have been synthesized. These nanotubes were employed to encapsulate potential disulfide herbicide mimics that have previously shown relevant inhibitory activity against weeds. The three-dimensional chemical information from scanning transmission electron microscope analytical tomography with subnanometer scale resolution convincingly demonstrates for the first time the occurrence of efficient encapsulation within a fully organic nanotube of different organic molecules with activity as herbicides. The encapsulation was achieved in a one-pot synthesis, in an aqueous environment and under in situ conditions without using any marker or coating with contrast materials, which renders the process greener than those routinely used. The nanotubes allow complete water solubilization, with an encapsulation percentage of up to 78% in all of the herbicide compounds. Furthermore, nanotubes showed a flattened arrangement due to the host-guest interaction. The synthetic approach represents a step forward in solving the key problem of the quite limited solubility of natural agrochemicals in aqueous environments. In addition, the process presents a breakthrough in the use of natural products produced by the human body as encapsulating agents, which expands possible future applications. The preliminary docking approach clarifies that the 2o01 transmembrane transport protein seems to be the prior channel of the organic nanotube in the delivery process to vegetable cells. The etiolated wheat coleoptile bioassay demonstrated that the encapsulated herbicides have improved the bioactivity of free compounds, keeping 60% of inhibition of the weed at least for every disulfide, a requisite for their fruitful application as agrochemicals.


Asunto(s)
Agroquímicos/química , Herbicidas/química , Nanotubos/química , Agroquímicos/farmacología , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Herbicidas/farmacología , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Solubilidad
8.
Gels ; 3(2)2017 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30920520

RESUMEN

A novel and simple transcription strategy has been designed for the template-synthesis of CePO4·xH2O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to direct the mineralization of high aspect ratio nanofibrous cerium phosphate, which in-situ formed by diffusion of aqueous CeCl3 and subsequent drying (60 °C) and annealing treatments (250, 600 and 900 °C). Dried xerogels and annealed CePO4 powders were characterized by conventional thermal and thermogravimetric analysis (DTA/TG), and Wide-Angle X-ray powder diffraction (WAXD) and X-ray powder diffraction (XRD) techniques. A molecular packing model for the formation of the fibrous xerogel template was proposed, in accordance with results from Fourier-Transformed Infrarred (FTIR) and WAXD measurements. The morphology, crystalline structure and composition of CePO4 nanofibers were characterized by electron microscopy techniques (Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy/High-Resolution Transmission Electron Microscopy (TEM/HRTEM), and Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field (STEM-HAADF)) with associated X-ray energy-dispersive detector (EDS) and Scanning Transmission Electron Microscopy-Electron Energy Loss (STEM-EELS) spectroscopies. Noteworthy, this templating approach successfully led to the formation of CePO4·H2O nanofibrous bundles of rather co-aligned and elongated nanofibers (10⁻20 nm thick and up to ca. 1 µm long). The formed nanofibers consisted of hexagonal (P6222) CePO4 nanocrystals (at 60 and 250 °C), with a better-grown and more homogeneous fibrous morphology with respect to a reference CePO4 prepared under similar (non-templated) conditions, and transformed into nanofibrous monoclinic monazite (P21/n) around 600 °C. The nanofibrous morphology was highly preserved after annealing at 900 °C under N2, although collapsed under air conditions. The nanofibrous CePO4 (as-prepared hexagonal and 900 °C-annealed monoclinic) exhibited an enhanced UV photo-luminescent emission with respect to non-fibrous homologues.

9.
Langmuir ; 32(17): 4313-22, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27058299

RESUMEN

Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides.

10.
Nano Lett ; 16(1): 760-5, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26683223

RESUMEN

While being key to understanding their intriguing physical properties, the origin of nanophase separation in manganites and other strongly correlated materials is still unclear. Here, experimental evidence is offered for the origin of the controverted phase separation mechanism in the representative La1-xCaxMnO3 system. For low hole densities, direct evidence of Mn(4+) holes localization around Ca(2+) ions is experimentally provided by means of aberration-corrected scanning transmission electron microscopy combined with electron energy loss spectroscopy. These localized holes give rise to the segregated nanoclusters, within which double exchange hopping between Mn(3+) and Mn(4+) remains restricted, accounting for the insulating character of perovskites with low hole density. This localization is explained in terms of a simple model in which Mn(4+) holes are bound to substitutional divalent Ca(2+) ions.

11.
Chem Commun (Camb) ; 49(60): 6722-4, 2013 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-23785711

RESUMEN

Nano-structural and nano-analytical studies show that the dramatic difference in CO oxidation activity observed between two Au/Ce0.50Tb0.12Zr0.38O2-x samples prepared by deposition-precipitation with urea and further activated under oxidising or reducing conditions is due to the poisoning effect of a very thin layer of carbon grown on the pre-reduced catalyst.

12.
ACS Nano ; 6(8): 6812-20, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22789638

RESUMEN

A variety of advanced (scanning) transmission electron microscopy experiments, carried out in aberration-corrected equipment, provide direct evidence about subtle structural changes taking place at nanometer-sized Au||ceria oxide interfaces, which agrees with the occurrence of charge transfer effects between the reduced support and supported gold nanoparticles suggested by macroscopic techniques. Tighter binding of the gold nanoparticles onto the ceria oxide support when this is reduced is revealed by the structural analysis. This structural modification is accompanied by parallel deactivation of the CO chemisorption capacity of the gold nanoparticles, which is interpreted in exact quantitative terms as due to deactivation of the gold atoms at the perimeter of the Au||cerium oxide interface.


Asunto(s)
Cerio/química , Oro/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Transporte de Electrón , Sustancias Macromoleculares/química , Ensayo de Materiales , Microscopía Electrónica de Transmisión , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
13.
Microsc Microanal ; 18(3): 568-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22568917

RESUMEN

Nanoscale resolution electron microscopy analysis combined with ion beam assisted techniques are presented here, to give answers to full characterization of morphology, growth mode, phase formation, and compositional distribution in nanocomposite TiAlSiN coatings deposited under different energetic conditions. Samples were prepared by magnetron sputtering, and the effects of substrate temperature and bias were investigated. The nanocomposite microstructure was demonstrated by the formation of a face-centered cubic (Ti,Al)N phase, obtained by substitution of Al in the cubic titanium nitride (c-TiN) phase, and an amorphous matrix at the column boundary regions mainly composed of Si, N (and O for the samples with higher oxygen contents). Oxygen impurities, predicted as the principal responsible for the degradation of properties, were identified, particularly in nonbiased samples and confirmed to occupy preferentially nitrogen positions at the column boundaries, being mainly associated to silicon forming oxynitride phases. It has been found that the columnar growth mode is not the most adequate to improve mechanical properties. Only the combination of moderate bias and additional substrate heating was able to reduce the oxygen content and eliminate the columnar microstructure leading to the nanocomposite structure with higher hardness (>30 GPa).

15.
Chemistry ; 16(31): 9536-43, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20572188

RESUMEN

The influence of the highly dispersed gold phase on the CO-support interaction occurring in two 2.5 wt % Au/Ce(0.62)Zr(0.38)O(2) catalysts with medium (Au/CZ-MD) and high (Au/CZ-HD) metal dispersion is quantitatively assessed. For this purpose, we have followed an approach in which high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), computer modelling, volumetric adsorption and FTIR spectroscopy studies are combined. This approach has already been fruitfully applied to the investigation of the specific CO-metal adsorption in Au/ceria-zirconia catalysts. As deduced from the experimental studies reported herein, the presence of gold dramatically increases the amount of CO strongly chemisorbed on the support. Moreover, this amount is sensitive to the metal dispersion, thus suggesting the occurrence of a mechanism in which the CO molecules that are initially adsorbed on the gold nanoparticles are further transferred to the support by means of a spillover process. An annular model is proposed for the growth of the CO phase adsorbed on the ceria-zirconia mixed oxide in the presence of Au. By assuming this model, we have estimated the width of the annulus, Delta r, of the adsorbed CO grown around the Au nanoparticles in Au/CZ-MD and Au/CZ-HD catalysts. This value is found to be very close to Delta r approximately 2 nm in both cases, the coincidence lending some additional support to the model. To further confirm this proposal, we have investigated the influence of CO pre-adsorption on the D(2)-Au/CZ-MD interaction, at 298 K. As revealed by FTIR spectroscopy, the kinetics of the deuterium spillover is significantly disturbed by the pre-adsorbed CO, which is fully consistent with an annular model for the CO adsorption. We conclude from the global analysis of the results reported here and those already available on CO-Au adsorption that the appropriate combination of nanostructural, computer modelling and chemical techniques is a powerful tool allowing us to gain a comprehensive picture of the complex series of processes involved in the CO adsorption on this relevant family of gold catalysts.

17.
Inorg Chem ; 49(4): 1705-11, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20067250

RESUMEN

Bimetallic CoNi nanoparticles have been prepared within the apoferritin cavity. The protein shell controls size, prevents aggregation, and makes nanoparticles water-soluble. The CoNi series prepared in this way were structurally and magnetically characterized, the resulting magnetic properties varying accordingly with composition (Co(75)/Ni(25), Co(50)/Ni(50), Co(25)/Ni(75)). Co and Ni metals were associated in each nanoparticle, as demonstrated by high-angle annular dark field scanning electron microscopy and electron energy loss spectroscopy (EELS). After intentional oxidation, the CoNi nanoparticles were characterized by EELS, X-ray absorption near edge structure (XANES), and SQUID measurements to evaluate the importance of the oxidation on magnetic properties.


Asunto(s)
Apoferritinas/química , Cobalto/química , Litio/química , Magnetismo/métodos , Nanopartículas del Metal/química , Nanotecnología/métodos , Níquel/química , Catálisis , Cristalización , Conductividad Eléctrica , Electroquímica/métodos , Microscopía Electrónica de Transmisión/métodos , Nanoestructuras , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie , Agua/química , Difracción de Rayos X
18.
J Am Chem Soc ; 130(25): 8062-8, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18507465

RESUMEN

Transmission Electron Microscopy (TEM), X-ray Absorption Near Edge Spectroscopy (XANES), Electron Energy-Loss Spectroscopy (EELS), Small-Angle X-ray Scattering (SAXS), and SQUID magnetic studies were performed in a batch of horse spleen ferritins from which iron had been gradually removed, yielding samples containing 2200, 1200, 500, and 200 iron atoms. Taken together, findings obtained demonstrate that the ferritin iron core consists of a polyphasic structure (ferrihydrite, magnetite, hematite) and that the proportion of phases is modified by iron removal. Thus, the relative amount of magnetite in ferritin containing 2200 to 200 iron atoms rose steadily from approximately 20% to approximately 70% whereas the percentage of ferrihydrite fell from approximately 60% to approximately 20%. These results indicate a ferrihydrite-magnetite core-shell structure. It was also found that the magnetite in the ferritin iron core is not a source of free toxic ferrous iron, as previously believed. Therefore, the presence of magnetite in the ferritin cores of patients with Alzheimer's disease is not a cause of their increased brain iron(II) concentration.


Asunto(s)
Ferritinas/análisis , Ferritinas/química , Hierro/análisis , Sustancias Macromoleculares/química , Modelos Químicos , Animales , Óxido Ferrosoférrico/química , Caballos , Microscopía Electrónica de Transmisión , Bazo/química
19.
Chemistry ; 13(27): 7771-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17611949

RESUMEN

The addition of iron to high-area TiO2 (Degussa P25, a mixture of anatase and rutile) increases the number of oxygen defect sites that react with O2 to form peroxide and superoxide species. In the presence of gold nanoclusters on the TiO2 surface, the superoxide species become highly reactive, and the activity of the supported gold catalyst for CO oxidation is approximately twice that of the most active comparable catalysts described in the literature. Images of the catalyst obtained by scanning transmission electron microscopy combined with spectra of the catalyst measured in the working state (Raman, extended X-ray absorption fine structure, and X-ray absorption near-edge structure) indicate strong interactions of gold with the support and the presence of iron near the interfaces between the gold clusters and the TiO2 support. The high activity of the catalysts is attributed to the presence of defects in these sites that activate oxygen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA