Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 12: 635923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122329

RESUMEN

Macrophages are immune cells that play crucial roles in host defense against pathogens by triggering their exceptional phagocytic and inflammatory functions. Macrophages that reside in healthy tissues also accomplish important tasks to preserve organ homeostasis, including lipid uptake/efflux or apoptotic-cell clearance. Both homeostatic and inflammatory functions of macrophages require the precise stability of lipid-rich microdomains located at the cell membrane for the initiation of downstream signaling cascades. Caveolin-1 (Cav-1) is the main protein responsible for the biogenesis of caveolae and plays an important role in vascular inflammation and atherosclerosis. The Liver X receptors (LXRs) are key transcription factors for cholesterol efflux and inflammatory gene responses in macrophages. Although the role of Cav-1 in cellular cholesterol homeostasis and vascular inflammation has been reported, the connection between LXR transcriptional activity and Cav-1 expression and function in macrophages has not been investigated. Here, using gain and loss of function approaches, we demonstrate that LXR-dependent transcriptional pathways modulate Cav-1 expression and compartmentation within the membrane during macrophage activation. As a result, Cav-1 participates in LXR-dependent cholesterol efflux and the control of inflammatory responses. Together, our data show modulation of the LXR-Cav-1 axis could be exploited to control exacerbated inflammation and cholesterol overload in the macrophage during the pathogenesis of lipid and immune disorders, such as atherosclerosis.


Asunto(s)
Caveolina 1/biosíntesis , Colesterol/metabolismo , Receptores X del Hígado/biosíntesis , Macrófagos/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Antiinflamatorios , Apolipoproteína A-I/metabolismo , Aterosclerosis/metabolismo , Caveolina 1/genética , Membrana Celular/metabolismo , Detergentes , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Transducción de Señal , Transcripción Genética
2.
Ann Rheum Dis ; 80(7): 865-875, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33741556

RESUMEN

OBJECTIVE: Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. METHODS: In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. RESULTS: JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. CONCLUSION: Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.


Asunto(s)
Antirreumáticos/farmacología , Citocinas/efectos de los fármacos , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/efectos de los fármacos , Piridinas/farmacología , Triazoles/farmacología , Artritis Reumatoide , Azetidinas/farmacología , Células Cultivadas , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Piperidinas/farmacología , Purinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Sulfonamidas/farmacología
3.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937105

RESUMEN

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Asunto(s)
Macrófagos/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Anciano , Animales , Apoptosis , Autofagia , Femenino , Corazón/fisiología , Homeostasis , Humanos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/fisiología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo
4.
Life Sci Alliance ; 3(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32571802

RESUMEN

Genome-wide association studies have implicated the TAM receptor tyrosine kinase (RTK) Mer in liver disease, yet our understanding of the role that Mer and its related RTKs Tyro3 and Axl play in liver homeostasis and the response to acute injury is limited. We find that Mer and Axl are most prominently expressed in hepatic Kupffer and endothelial cells and that as mice lacking these RTKs age, they develop profound liver disease characterized by apoptotic cell accumulation and immune activation. We further find that Mer is critical to the phagocytosis of apoptotic hepatocytes generated in settings of acute hepatic injury, and that Mer and Axl act in concert to inhibit cytokine production in these settings. In contrast, we find that Axl is uniquely important in mitigating liver damage during acetaminophen intoxication. Although Mer and Axl are protective in acute injury models, we find that Axl exacerbates fibrosis in a model of chronic injury. These divergent effects have important implications for the design and implementation of TAM-directed therapeutics that might target these RTKs in the liver.


Asunto(s)
Hígado/lesiones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Animales , Apoptosis/genética , Células Endoteliales/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/genética , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa del Receptor Axl
5.
Artículo en Inglés | MEDLINE | ID: mdl-27999564

RESUMEN

Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.

6.
Biochem J ; 473(14): 2061-71, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27154204

RESUMEN

Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory-related diseases triggered by Gram-negative bacteria or by the associated cytokine TNF-α.


Asunto(s)
Diterpenos/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inflamación/prevención & control , Lipopolisacáridos/farmacología , Animales , Línea Celular , Quimiocina CCL5/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Células Endoteliales/inmunología , Inflamación/inducido químicamente , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
Nature ; 532(7598): 240-244, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27049947

RESUMEN

Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.


Asunto(s)
Encéfalo/metabolismo , Microglía/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Apoptosis , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Masculino , Ratones , Neurogénesis , Enfermedad de Parkinson/metabolismo , Fagocitosis , Proteína S/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Tirosina Quinasas Receptoras/deficiencia , Transducción de Señal , Nicho de Células Madre , Regulación hacia Arriba , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
8.
Mol Metab ; 4(5): 378-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25973386

RESUMEN

OBJECTIVE: Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ). METHODS: To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1 (flx/flx) aP2Cre (+) (ATKO) and Sirt1 (flx/flx) aP2Cre (-) (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue. RESULTS: On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity. CONCLUSION: Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM.

9.
Arterioscler Thromb Vasc Biol ; 35(6): 1463-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25882065

RESUMEN

OBJECTIVE: Although it is accepted that macrophage glycolysis is upregulated under hypoxic conditions, it is not known whether this is linked to a similar increase in macrophage proinflammatory activation and whether specific energy demands regulate cell viability in the atheromatous plaque. APPROACH AND RESULTS: We studied the interplay between macrophage energy metabolism, polarization, and viability in the context of atherosclerosis. Cultured human and murine macrophages and an in vivo murine model of atherosclerosis were used to evaluate the mechanisms underlying metabolic and inflammatory activity of macrophages in the different atherosclerotic conditions analyzed. We observed that macrophage energetics and inflammatory activation are closely and linearly related, resulting in dynamic calibration of glycolysis to keep pace with inflammatory activity. In addition, we show that macrophage glycolysis and proinflammatory activation mainly depend on hypoxia-inducible factor and on its impact on glucose uptake, and on the expression of hexokinase II and ubiquitous 6-phosphofructo-2-kinase. As a consequence, hypoxia potentiates inflammation and glycolysis mainly via these pathways. Moreover, when macrophages' ability to increase glycolysis through 6-phosphofructo-2-kinase is experimentally attenuated, cell viability is reduced if subjected to proinflammatory or hypoxic conditions, but unaffected under control conditions. In addition to this, granulocyte-macrophage colony-stimulating factor enhances anerobic glycolysis while exerting a mild proinflammatory activation. CONCLUSIONS: These findings, in human and murine cells and in an animal model, show that hypoxia potentiates macrophage glycolytic flux in concert with a proportional upregulation of proinflammatory activity, in a manner that is dependent on both hypoxia-inducible factor -1α and 6-phosphofructo-2-kinase.


Asunto(s)
Aterosclerosis/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macrófagos/metabolismo , Fosfofructoquinasa-2/metabolismo , Animales , Hipoxia de la Célula , Modelos Animales de Enfermedad , Glucólisis , Humanos , Inflamación/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
10.
Mediators Inflamm ; 2014: 832103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25214717

RESUMEN

The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca(2+)-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca(2+)-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells.


Asunto(s)
Calcio/metabolismo , Ciclooxigenasa 2/metabolismo , Fibroblastos/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animales , Núcleo Celular/metabolismo , Inmunoensayo , Ratones , Ratones Endogámicos C57BL
11.
Elife ; 32014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25265470

RESUMEN

The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fosfatidilserinas/metabolismo , Proteína S/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Línea Celular , Embrión de Mamíferos , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/genética , Fosfatidilserinas/farmacología , Cultivo Primario de Células , Proteína S/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
12.
Nat Immunol ; 15(10): 920-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194421

RESUMEN

The clearance of apoptotic cells is critical for both tissue homeostasis and the resolution of inflammation. We found that the TAM receptor tyrosine kinases Axl and Mer had distinct roles as phagocytic receptors in these two settings, in which they exhibited divergent expression, regulation and activity. Mer acted as a tolerogenic receptor in resting macrophages and during immunosuppression. In contrast, Axl was an inflammatory response receptor whose expression was induced by proinflammatory stimuli. Axl and Mer differed in their ligand specificities, ligand-receptor complex formation in tissues, and receptor shedding upon activation. These differences notwithstanding, phagocytosis by either protein was strictly dependent on receptor activation triggered by bridging of TAM receptor-ligand complexes to the 'eat-me' signal phosphatidylserine on the surface of apoptotic cells.


Asunto(s)
Células Dendríticas/inmunología , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Animales , Apoptosis/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Immunoblotting , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Fagocitosis/inmunología , Unión Proteica/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
13.
Chem Biol ; 21(8): 955-66, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25065531

RESUMEN

The effect of acanthoic acid analogs on the response to proinflammatory challenge was investigated. Some pimarane diterpenes are known activators of the LXRαß nuclear receptors, but we show here that they also exert a rapid, potent, and selective activation of the p110γ and p110δ subunits of PI3K. Combination of these effects results in an important attenuation of the global transcriptional response to LPS in macrophages. PI3K/Akt activation leads to inhibition of the LPS-dependent stimulation of IKK/NF-κB and p38 and ERK MAPKs. Macrophages from LXRαß-deficient mice exhibited an inhibition of these pathways similar to the corresponding wild-type cells. Silencing or inhibition of p110γ/δ suppressed the effect of these diterpenes (DTPs) on IKK/NF-κB and MAPKs signaling. Taken together, these data show a multitarget anti-inflammatory mechanism by these DTPs including a selective activation of PI3K isoenzymes.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Fosfatidilinositol 3-Quinasa Clase Ia/química , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Diterpenos/farmacología , FN-kappa B/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Animales , Antiinflamatorios no Esteroideos/química , Diterpenos/química , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Receptores X del Hígado , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Conformación Molecular , FN-kappa B/metabolismo , Células 3T3 NIH , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/metabolismo , Subunidades de Proteína/química , Relación Estructura-Actividad
14.
J Immunol ; 191(12): 6136-46, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24249731

RESUMEN

Potassium channels modulate macrophage physiology. Blockade of voltage-dependent potassium channels (Kv) by specific antagonists decreases macrophage cytokine production and inhibits proliferation. In the presence of aspirin, acetylated cyclooxygenase-2 loses the activity required to synthesize PGs but maintains the oxygenase activity to produce 15R-HETE from arachidonate. This intermediate product is transformed via 5-LOX into epimeric lipoxins, termed 15-epi-lipoxins (15-epi-lipoxin A4 [e-LXA4]). Kv have been proposed as anti-inflammatory targets. Therefore, we studied the effects of e-LXA4 on signaling and on Kv and inward rectifier potassium channels (Kir) in mice bone marrow-derived macrophages (BMDM). Electrophysiological recordings were performed in these cells by the whole-cell patch-clamp technique. Treatment of BMDM with e-LXA4 inhibited LPS-dependent activation of NF-κB and IκB kinase ß activity, protected against LPS activation-dependent apoptosis, and enhanced the accumulation of the Nrf-2 transcription factor. Moreover, treatment of LPS-stimulated BMDM with e-LXA4 resulted in a rapid decrease of Kv currents, compatible with attenuation of the inflammatory response. Long-term treatment of LPS-stimulated BMDM with e-LXA4 significantly reverted LPS effects on Kv and Kir currents. Under these conditions, e-LXA4 decreased the calcium influx versus that observed in LPS-stimulated BMDM. These effects were partially mediated via the lipoxin receptor (ALX), because they were significantly reverted by a selective ALX receptor antagonist. We provide evidence for a new mechanism by which e-LXA4 contributes to inflammation resolution, consisting of the reversion of LPS effects on Kv and Kir currents in macrophages.


Asunto(s)
Inmunidad Innata/fisiología , Canal de Potasio Kv1.3/biosíntesis , Canal de Potasio Kv1.5/biosíntesis , Lipoxinas/farmacología , Activación de Macrófagos/fisiología , Canales de Potasio de Rectificación Interna/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Calcio/fisiología , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Interleucina-13/farmacología , Interleucina-4/farmacología , Transporte Iónico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.5/genética , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Potasio/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Formil Péptido/agonistas , Receptores de Formil Péptido/fisiología , Venenos de Escorpión/farmacología , Organismos Libres de Patógenos Específicos , Regulación hacia Arriba
15.
J Immunol ; 190(8): 4226-35, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23479225

RESUMEN

Extracellular nucleotides have been recognized as important modulators of inflammation via their action on specific pyrimidine receptors (P2). This regulation coexists with the temporal framework of proinflammatory and proresolution mediators released by the cells involved in the inflammatory response, including macrophages. Under proinflammatory conditions, the expression of cyclooxygenase-2 leads to the release of large amounts of PGs, such as PGE2, that exert their effects through EP receptors and other intracellular targets. The effect of these PGs on P2 receptors expressed in murine and human macrophages was investigated. In thioglycollate-elicited and alternatively activated macrophages, PGE2 selectively impairs P2Y but not P2X7 Ca(2+) mobilization. This effect is absent in LPS-activated cells and is specific for PGE2 because it cannot be reproduced by other PGs with cyclopentenone structure. The inhibition of P2Y responses by PGE2 involves the activation of nPKCs (PKCε) and PKD that can be abrogated by selective inhibitors or by expression of dominant-negative forms of PKD. The inhibition of P2Y signaling by PGE2 has an impact on the cell migration elicited by P2Y agonists in thioglycollate-elicited and alternatively activated macrophages, which provide new clues to understand the resolution phase of inflammation, when accumulation of PGE2, anti-inflammatory and proresolving mediators occurs.


Asunto(s)
Calcio/fisiología , Dinoprostona/fisiología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Receptores Purinérgicos P2Y/fisiología , Transducción de Señal/inmunología , Animales , Señalización del Calcio/inmunología , Células Cultivadas , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y/deficiencia , Receptores Purinérgicos P2Y/metabolismo
16.
Oncoimmunology ; 1(8): 1227-1238, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23243586

RESUMEN

The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf(-/-) macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf(-/-) peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf(-/-) as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf(-/-) macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.

17.
Neuron ; 76(6): 1123-32, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23259948

RESUMEN

Although TAM receptor tyrosine kinases play key roles in immune regulation, cancer metastasis, and viral infection, the relative importance of the two TAM ligands-Gas6 and Protein S-has yet to be resolved in any setting in vivo. We have now performed a genetic dissection of ligand function in the retina, where the TAM receptor Mer is required for the circadian phagocytosis of photoreceptor outer segments by retinal pigment epithelial cells. This process is severely attenuated in Mer mutant mice, which leads to photoreceptor death. We find that retinal deletion of either Gas6 or Protein S alone yields retinae with a normal number of photoreceptors. However, concerted deletion of both ligands fully reproduces the photoreceptor death seen in Mer mutants. These results demonstrate that Protein S and Gas6 function as independent, bona fide Mer ligands, and are, to a first approximation, interchangeable with respect to Mer-driven phagocytosis in the retina.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fagocitosis/fisiología , Proteína S/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Epitelio Pigmentado de la Retina/citología , Retinitis Pigmentosa/fisiopatología , Animales , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Ligandos , Ratones , Ratones Noqueados , Células Fotorreceptoras de Vertebrados/fisiología , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Epitelio Pigmentado de la Retina/fisiología , Tirosina Quinasa c-Mer
18.
Oncoimmunology ; 1(6): 946-947, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23162766

RESUMEN

ARF (alternative reading frame) is one of the most important tumor regulator playing critical roles in controlling tumor initiation and progression. Recently, we have demonstrated a novel and unexpected role for ARF as modulator of inflammatory responses.

19.
J Immunol ; 188(3): 1402-10, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22190182

RESUMEN

The activation of immune cells in response to a pathogen involves a succession of signaling events leading to gene and protein expression, which requires metabolic changes to match the energy demands. The metabolic profile associated with the MAPK cascade (ERK1/2, p38, and JNK) in macrophages was studied, and the effect of its inhibition on the specific metabolic pattern of LPS stimulation was characterized. A [1,2-[(13)C](2)]glucose tracer-based metabolomic approach was used to examine the metabolic flux distribution in these cells after MEK/ERK inhibition. Bioinformatic tools were used to analyze changes in mass isotopomer distribution and changes in glucose and glutamine consumption and lactate production in basal and LPS-stimulated conditions in the presence and absence of the selective inhibitor of the MEK/ERK cascade, PD325901. Results showed that PD325901-mediated ERK1/2 inhibition significantly decreased glucose consumption and lactate production but did not affect glutamine consumption. These changes were accompanied by a decrease in the glycolytic flux, consistent with the observed decrease in fructose-2,6-bisphosphate concentration. The oxidative and nonoxidative pentose phosphate pathways and the ratio between them also decreased. However, tricarboxylic acid cycle flux did not change significantly. LPS activation led to the opposite responses, although all of these were suppressed by PD325901. However, LPS also induced a small decrease in pentose phosphate pathway fluxes and an increase in glutamine consumption that were not affected by PD325901. We concluded that inhibition of the MEK/ERK cascade interferes with central metabolism, and this cross-talk between signal transduction and metabolism also occurs in the presence of LPS.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Activación de Macrófagos , Macrófagos/metabolismo , Metabolómica/métodos , Metabolismo de los Hidratos de Carbono , Biología Computacional , Glucólisis , Lipopolisacáridos/farmacología , Metabolismo , Vía de Pentosa Fosfato
20.
Mediators Inflamm ; 2012: 568783, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23316105

RESUMEN

The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs) interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2) characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.


Asunto(s)
Mediadores de Inflamación/fisiología , Macrófagos/fisiología , Neoplasias/etiología , Proteína p14ARF Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Humanos , Tolerancia Inmunológica , Neoplasias/inmunología , Neovascularización Patológica/etiología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...