Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
4.
Front Plant Sci ; 13: 1027618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479516

RESUMEN

Maize is an important staple crop and a significant source of various nutrients. We aimed to determine the macronutrients, antioxidants, and essential elements in maize genotypes (white, yellow, and red kernel) using three different fertilizers, which could be used as a basis to increase the nutrient density of maize. The fertilizer treatments used bio- and organic fertilizers as a sustainable approach, urea, as a commonly used mineral fertilizer, and the control (no fertilization). We evaluated the yield, concentration of macronutrient (protein, oil, and starch), nonenzymatic antioxidants (phenolics, yellow pigment, total glutathione (GSH), and phytic phosphorus), and reduction capacity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, as well as essential elements that are commonly deficient in the diet (Mg, Ca, Fe, Mn, Zn, Cu, and S) and their relationships with phytic acid. The genotype expressed the strongest effect on the variability of grain yield and the analyzed grain constituents. The red-kernel hybrid showed the greatest accumulation of protein, oil, phenolics, and essential elements (Ca, Fe, Cu, and S) than a yellow and white hybrid, especially in the biofertilizer treatment. The yellow kernel had the highest concentrations of yellow pigment, GSH, phytic phosphorous, Mg, Mn, and Zn (19.61 µg g-1, 1,134 nmol g-1, 2.63 mg g-1, 1,963 µg g-1, 11.7 µg g-1, and 33.9 µg g-1, respectively). The white kernel had a greater starch concentration (2.5% higher than that in the red hybrid) and the potential bioavailability of essential metals, particularly under no fertilization. This supports the significance of white maize as a staple food in many traditional diets across the world. Urea was important for the enhancement of the antioxidant status (with 88.0% reduction capacity for the DPPH radical) and increased potential Zn bioavailability in the maize kernels (13.3% higher than that in the biofertilizer treatment). This study underlines the differences in the yield potential and chemical composition of red, yellow, and white-kernel maize and their importance as a necessary part of a sustainable human diet. This information can help determine the most appropriate genotype based on the antioxidants and/or essential elements targeted for kernel improvement.

5.
Pest Manag Sci ; 78(10): 3957-3972, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35510308

RESUMEN

Invasive plant species (IPS) are often considered weeds that cause high yield losses in crops, negatively affect the environment, and disrupt certain ecosystem services. The negative impact of IPS on biodiversity is increasing and disturbing native vegetation. The management of plant invasions can be divided in two phases (before and after invasion). Prior to introduction it is crucial to develop the knowledge base (biology, ecology, distribution, impact, management) on IPS, prevention measures and risk assessment. After introduction if eradication fails, the monitoring and the integrated management of IPS are imperative to prevent the naturalization and further dispersal. This review uses two major invasive weed species (Amaranthus palmeri S. Wats. and Solanum elaeagnifolium Cav.) as case studies to propose a framework for early detection, rapid herbicide resistance screening, and integrated management. The holistic framework that is presented exploits recent: (i) novel detection tools, (ii) rapid tests and assays for herbicide resistance, and (iii) biology, ecology, distribution traits, and management tools for the IPS. Farmers, advisors, researchers, and policymakers need briefing on IPS growth dynamics, adaptability rates, and response to conventional and novel treatments to prevent new invasions, eradicate isolated stands, and mitigate the impact of invasive weed species in the long term. © 2022 Society of Chemical Industry.


Asunto(s)
Amaranthus , Herbicidas , Ecosistema , Resistencia a los Herbicidas , Herbicidas/farmacología , Especies Introducidas , Malezas , Control de Malezas
6.
Plants (Basel) ; 9(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121525

RESUMEN

Glyphosate retention, absorption and translocation with and without adjuvant were examined in Lolium rigidum and Conyza canadensis in greenhouse and laboratory settings to develop an understanding of the influence of the selected adjuvant on glyphosate activity. Tests on whole plants show that the dose of herbicide needed to reduce dry weight by 50% (GR50) or plant survival (LD50) decreases by mixing glyphosate and adjuvant to 22%-24% and 42%-44% for both populations of L. rigidum and C. canadensis, respectively. This improvement in efficacy could be attributed to the higher herbicide retention and lower contact angle of the glyphosate + adjuvant drops on the leaf surface compared to the glyphosate solution alone. Plants of both species treated with 14C-glyphosate + adjuvant absorbed more glyphosate compared to non-adjuvant addition. Furthermore, the movement of the herbicide through the plant was faster and greater with the adjuvant. Our results reveal that the use of adjuvants improves the effectiveness of glyphosate in two of the most important weeds in agricultural crops in Mediterranean countries.

7.
Front Plant Sci ; 11: 608845, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384707

RESUMEN

Annual ryegrass species (Lolium spp.) infest cereal crops worldwide. Ryegrass populations with multiple resistance to the acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors are an increasing problem in several European countries. We investigated the resistance pattern and level of resistance in ryegrass populations collected in Denmark, Greece and Italy and studied the diversity of mechanisms endowing resistance, both target-site and metabolism based. All populations showed high resistance indexes (RI) to the ALS inhibitors, iodosufuron-methyl-sodium + mesosulfuron-methyl (RI from 8 to 70), whereas the responses to the two ACCase inhibitors, clodinafop-propargyl and pinoxaden, differed. The Greek and Italian populations were moderately to highly resistant to clodinafop (RI > 8) and showed low to moderate resistance to pinoxaden (RI ranged from 3 to 13) except for one Italian population. In contrast, the Danish Lolium populations showed low to moderate resistance to clodinafop (RI ranged from 2 to 7) and only one population was resistant to pinoxaden. Different mutant ACCase alleles (Leu1781, Cys2027, Asn2041, Val2041, Gly2078, Arg2088, Ala2096) and ALS alleles (Gly122, Ala197, Gln197, Leu197, Ser197, Thr197, Val205, Asn376, Glu376, Leu574) endowing resistance were detected in the Greek and Italian populations. In several plants, no mutated ALS and ACCase alleles were found showing a great heterogeneity within and among the Greek and Italian populations. Conversely, no mutant ACCase alleles were identified in the four Danish populations and only one mutant ALS allele (Leu574) was detected in two Danish populations. The expression level of nitronate monooxygenase (NMO), glutathione S-transferase (GST) and cytochrome P450s (CYP72A1 and CYP72A2) varied broadly among populations and individual plants within the populations. Constitutive up-regulation of GST, CYP72A1 and CYP72A2 was detected in resistant plants respect to susceptible plants in one Danish and one Italian population. It appears that the mechanisms underlying resistance are rather complex and diversified among Lolium spp. populations from the three countries, coevolution of both target-site resistance and metabolic based herbicide resistance appears to be a common feature in Denmark and Italy. This must be considered and carefully evaluated in adopting resistance management strategies to control Lolium spp. in cereal crops.

8.
Sci Rep ; 7(1): 13116, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030627

RESUMEN

Herbicides are the most effective tools for controlling almost 99% of weeds. However, herbicide resistance is a primary concern in modern agriculture. The characterization in new areas and elucidation of the mechanisms of resistance are of vital importance in maintaining the sustainability of herbicides, including glyphosate. Nine populations of Lolium rigidum, showing different response patterns, were characterized as being glyphosate resistant (GR). The wide range of values in fresh weight reduction, survival, shikimic acid and EPSPS enzyme activity indicates a different or a combination resistance mechanism. The Line-3 population resulted in minimum reduction of fresh weight and survival values with respect to the glyphosate-susceptible (GS) population, showing 16.05- and 17.90-fold higher values, respectively. There were significant differences in the 14C-glyphosate translocation between GR and GS populations. Moreover, there were differences among the nine GR populations, but they exhibited a reduction in the remaining glyphosate translocation in the treated leaf. The EPSPS gene sequence revealed a Pro-106-Ser substitution in four populations, which could be characterized as being GR with non-target-site and target-site resistance mechanisms. This complexity of several resistance mechanisms makes it necessary to develop long-term integrated weed management strategies to limit further resistance dispersal.


Asunto(s)
Glicina/análogos & derivados , Lolium/genética , Francia , Glicina/metabolismo , Glicina/farmacología , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Lolium/efectos de los fármacos , Ácido Shikímico/metabolismo , España , Glifosato
9.
Int J Mol Sci ; 18(6)2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28587254

RESUMEN

Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.


Asunto(s)
Agricultura , Productos Agrícolas/genética , Estiércol , Cruzamiento , Ecosistema , Grano Comestible , Fabaceae , Variación Genética , Vicia faba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...