Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Bodyw Mov Ther ; 38: 254-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38763567

RESUMEN

OBJECTIVES: The purpose of this study was to compare physiological responses to myofascial release (MFR) and passive limb movement (PLM). DESIGN: Nineteen (23 ± 2.6yrs) adults (10 men and 9 women) completed two experiments on separate days: MFR and PLM. Participation included collecting ultrasound images, blood pressure, and heart rate (HR) as well as performing a vascular occlusion test (VOT). The VOT assessed muscle tissue oxygenation (StO2) with near-infrared spectroscopy. Experiments consisted of moving the upper limb to release subtle barriers of resistance in the muscle/fascia (MFR) and passive, assisted range of motion (PLM). RESULTS: There was a significantly (p = 0.012) greater decrease in HR following MFR (-7.3 ± 5.2 BPM) than PLM (-1.3 ± 0.9 BPM). There was an equivalent change in brachial blood flow (-17.3 ± 23.0 vs. -11.9 ± 14.9 mL min-1; p = 0.37) and vascular conductance (-19.3 ± 31.1 vs. -12.4 ± 15.3 mL min-1 mmHg-1; p = 0.38). Microvascular responses differed between the experiments such that MFR exhibited greater area under the curve (AUC, 1503 ± 499.1%∙s-1 vs. 1203 ± 411.1%∙s-1; p = 0.021) and time to maximum StO2 (40.0 ± 8.4s vs. 35.8 ± 7.3s; p = 0.009). CONCLUSIONS: As evidenced by HR, MFR induced greater parasympathetic activity than PLM. The greater AUC and time to StO2max following MFR suggested a spillover effect to induce prolonged hyper-saturation. These results may be of interest to those investigating possible MFR-related rehabilitative benefits.


Asunto(s)
Frecuencia Cardíaca , Músculo Esquelético , Humanos , Masculino , Femenino , Frecuencia Cardíaca/fisiología , Adulto , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Presión Sanguínea/fisiología , Espectroscopía Infrarroja Corta , Rango del Movimiento Articular/fisiología , Extremidad Superior/fisiología , Flujo Sanguíneo Regional/fisiología , Consumo de Oxígeno/fisiología , Microcirculación/fisiología
2.
Microcirculation ; 31(4): e12848, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38281244

RESUMEN

OBJECTIVE: We examined sex-specific microvascular reactivity and hemodynamic responses under conditions of augmented resting blood flow induced by passive heating compared to normal blood flow. METHODS: Thirty-eight adults (19 females) completed a vascular occlusion test (VOT) on two occasions preceded by rest with or without passive heating in a randomized, counterbalanced order. Skeletal muscle tissue oxygenation (StO2, %) was assessed with near-infrared spectroscopy (NIRS), and the rate of desaturation and resaturation as well as maximal StO2 (StO2max) and prolonged hypersaturation (area under the curve, StO2AUC) were quantified. Before the VOT, brachial artery blood flow (BABF), vascular conductance, and relative BABF (BABF normalized to forearm lean mass) were determined. Sex × condition ANOVAs were used. A p-value ≤.05 was considered statistically significant. RESULTS: Twenty minutes of heating increased BABF compared to the control (102.9 ± 28.3 vs. 36.0 ± 20.9 mL min-1; p < .01). Males demonstrated greater BABF than females (91.9 ± 34.0 vs. 47.0 ± 19.1 mL min-1; p < .01). There was no sex difference in normalized BABF. There were no significant interactions for NIRS-VOT outcomes, but heat did increase the rate of desaturation (-0.140 ± 0.02 vs. -0.119 ± 0.03% s-1; p < .01), whereas regardless of condition, males exhibited greater rates of resaturation and StO2max than females. CONCLUSIONS: These results suggest that blood flow is not the primary factor causing sex differences in NIRS-VOT outcomes.


Asunto(s)
Microcirculación , Músculo Esquelético , Humanos , Femenino , Masculino , Adulto , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Microcirculación/fisiología , Hemodinámica , Caracteres Sexuales , Flujo Sanguíneo Regional/fisiología , Calor , Arteria Braquial/fisiología , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta
3.
Am J Physiol Heart Circ Physiol ; 326(2): H346-H356, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038715

RESUMEN

The function of micro- and macrovessels within the peripheral vasculature has been identified as a target for the investigation of potential cardiovascular-based promoters of cognitive decline. However, little remains known regarding the interaction of the micro- and macrovasculature as it relates to cognitive function, especially in cognitively healthy individuals. Therefore, our purpose was to unravel peripheral factors that contribute to the association between age and processing speed. Ninety-nine individuals (51 men, 48 women) across the adult life span (19-81 yr) were used for analysis. Arterial stiffness was quantified as carotid-femoral pulse-wave velocity (cfPWV) and near-infrared spectroscopy assessed maximal tissue oxygenation (Sto2max) following a period of ischemia. Processing speed was evaluated with Trail Making Test (TMT) Parts A and B. Measures of central (cPP) and peripheral pulse pressure (pPP) were also collected. Moderated mediation analyses were conducted to determine contributions to the age and processing speed relation, and first-order partial correlations were used to assess associations while controlling for the linear effects of age. A P ≤ 0.05 was considered statistically significant. At low levels of Sto2max, there was a significant positive (b = 1.92; P = 0.005) effect of cfPWV on time to completion on TMT part A. In addition, cPP (P = 0.028) and pPP (P = 0.027) remained significantly related to part A when controlling for age. These results suggested that the peripheral microvasculature may be a valuable target for delaying cognitive decline, especially in currently cognitively healthy individuals. Furthermore, we reinforced current evidence that pulse pressure is a key endpoint for trials aimed at preventing or delaying the onset of cognitive decline.NEW & NOTEWORTHY Arterial stiffness partially mediates the association between age and processing speed in the presence of low microvascular function, as demarcated by maximum tissue oxygenation following ischemia. Central and peripheral pulse pressure remained associated with processing speed even after controlling for age. Our findings were derived from a sample that was determined to be cognitively healthy, which highlights the potential for these outcomes to be considered during trials aimed at the prevention of cognitive decline.


Asunto(s)
Longevidad , Rigidez Vascular , Masculino , Adulto , Humanos , Femenino , Velocidad de Procesamiento , Análisis de la Onda del Pulso , Presión Sanguínea , Isquemia
4.
Eur J Investig Health Psychol Educ ; 13(10): 2276-2289, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887162

RESUMEN

Adults do not engage in enough physical activity. Investigating cognitive and physiological factors related to improving this behavior-and reducing health risks-remains a public health priority. Our objective was to assess whether cognitive flexibility influenced perceptions and choice of exercise programs and whether flexibility was associated with cardiovascular disease (CVD) risk factors. Independent sample groups of college-aged adults (18-24 yrs) participated in two studies. Data were collected on individuals' degree of cognitive flexibility (both self-reported and objectively measured), perceptions and choice of exercise programs, and health status markers known to be associated with CVD (vascular function, muscular strength, and body composition). Vascular function was assessed with a near-infrared spectroscopy device, strength was defined as handgrip, and body composition was estimated via digital circumferences. Self-reported flexibility reliably predicted individuals' choice of exercise program and perceptions of effort required for success on an exercise program. The relationships among CVD risk factors and objectively measured cognitive flexibility were not significant, demonstrating that identifying a healthy individual's degree of performance-based cognitive flexibility does not predict health status. Furthermore, although greater self-reported trait flexibility (rigidity) is known to predict higher (lower) likelihood of physical activity, this finding should not be extrapolated to also assume that flexibility (rigidity), as measured by objective cognitive tests, is associated with reduced CVD risk in healthy adults. We posit a rationale for how understanding cognitive flexibility and rigidity can play an impactful role in improving adherence to exercise prescriptions targeted to reducing risks.

5.
J Appl Physiol (1985) ; 135(1): 3-14, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199783

RESUMEN

Men and women exhibit different near-infrared spectroscopy (NIRS) outcomes in response to vascular occlusion tests (VOT), which may be due to phenotypic characteristics or different degrees of desaturation during ischemia. The minimum skeletal muscle tissue oxygenation (StO2min) observed during a VOT may be the primary determinant of reactive hyperemic (RH) responses. Our purpose was to determine the contribution StO2min and participant characteristics including adipose tissue thickness (ATT), lean body mass (LBM), muscular strength, and limb circumference to NIRS-derived indexes of RH. Also, we aimed to determine if matching StO2min would eliminate NIRS-VOT sex differences. Thirty-one young adults completed one or two VOTs during which the vastus lateralis was continuously assessed for StO2. The men and women each completed a standard VOT with a 5-min ischemic phase. The men completed a second VOT with a shortened ischemic phase to produce a matching StO2min to the minimum of the women observed during the standard VOT. Mean sex differences were determined with t tests, and relative contributions were assessed with multiple regression and model comparison approaches. During the 5-min ischemic phase, the men exhibited greater upslopes (1.97 ± 0.66 vs. 1.23 ± 0.59%·s-1) and greater StO2max than the women (80.3 ± 4.17 vs. 76.2 ± 2.86%). Analysis revealed StO2min was a greater contributor to upslope than sex and/or ATT. For StO2max, sex was the only significant predictor (r2 = 0.26, men ∼4.09% > women). Experimentally matching StO2min did not eliminate the sex differences in upslope or StO2max, suggesting that characteristics other than the degree of desaturation primarily provoke sex differences in RH.NEW & NOTEWORTHY Men exhibit greater values of reactive hyperemia than women even when controlling for the magnitude of desaturation during transient ischemia. Factors other than the ischemic vasodilatory stimulus, such as skeletal muscle mass and quality, likely provoke the commonly reported sex differences in reactive hyperemia measured by near-infrared spectroscopy.


Asunto(s)
Hiperemia , Enfermedades Vasculares , Adulto Joven , Humanos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Caracteres Sexuales , Isquemia , Enfermedades Vasculares/metabolismo , Músculo Esquelético/metabolismo , Microcirculación/fisiología , Consumo de Oxígeno/fisiología
6.
Med Sci Sports Exerc ; 55(5): 920-931, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729632

RESUMEN

PURPOSE: The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS: Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS: Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS: The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.


Asunto(s)
Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Adulto Joven , Entrenamiento de Fuerza/métodos , Hemodinámica , Músculo Cuádriceps , Arteria Femoral/fisiología , Hemo , Flujo Sanguíneo Regional/fisiología , Músculo Esquelético/fisiología , Presión Sanguínea/fisiología
7.
Front Aging Neurosci ; 14: 980561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092801

RESUMEN

African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.

8.
Front Neurosci ; 16: 915405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844216

RESUMEN

Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA