Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210270, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252224

RESUMEN

The so-called extra-embryonic tissues are important for embryonic development in many animals, although they are not considered to be part of the germ band or the embryo proper. They can serve a variety of functions, such as nutrient uptake and waste removal, protection of the embryo against mechanical stress, immune response and morphogenesis. In insects, a subgroup of arthropods, extra-embryonic tissues have been studied extensively and there is increasing evidence that they might contribute more to embryonic development than previously thought. In this review, we provide an assessment of the occurrence and possible functions of extra-embryonic tissues in the closest arthropod relatives, onychophorans (velvet worms) and tardigrades (water bears). While there is no evidence for their existence in tardigrades, these tissues show a remarkable diversity across the onychophoran subgroups. A comparison of extra-embryonic tissues of onychophorans to those of arthropods suggests shared functions in embryonic nutrition and morphogenesis. Apparent contribution to the final form of the embryo in onychophorans and at least some arthropods supports the hypothesis that extra-embryonic tissues are involved in organogenesis. In order to account for this role, the commonly used definition of these tissues as 'extra-embryonic' should be reconsidered. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Artrópodos , Tardigrada , Animales , Desarrollo Embrionario , Morfogénesis , Filogenia
2.
Front Zool ; 16: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31182967

RESUMEN

BACKGROUND: Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia. RESULTS: All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen. CONCLUSIONS: Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae.

3.
BMC Dev Biol ; 19(1): 7, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987579

RESUMEN

BACKGROUND: NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. RESULTS: The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. CONCLUSIONS: Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians.


Asunto(s)
Artrópodos/embriología , Artrópodos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Animales , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Familia de Multigenes/genética , Sistema Nervioso/embriología , Factores de Transcripción/genética
4.
Arthropod Struct Dev ; 48: 12-19, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30447338

RESUMEN

Tardigrades form a monophyletic group of microscopic ecdysozoans best known for surviving extreme environmental conditions. Due to their key phylogenetic position as a subgroup of the Panarthropoda, understanding tardigrade biology is important for comparative studies with related groups like Arthropoda. Panarthropods - and Ecdysozoa as a whole - likely evolved from macroscopic ancestors, with several taxa becoming secondarily miniaturized. Morphological and genomic evidence likewise points to a miniaturized tardigrade ancestor. The five-segmented tardigrade body typically measures less than 1 mm in length and consists of only about 1000 cells. Most organs comprise a relatively small number of cells, with the highest proportion belonging to the central nervous system, while muscles are reduced to a single cell each. Similarly, fully sequenced genomes of three tardigrade species - together with Hox gene expression data - point to extensive modifications, rearrangements, and major losses of genes and even a large body region. Parallels are evident with related ecdysozoans that may have also undergone genomic reductions, such as the nematode Caenorhabditis elegans. We interpret these data together as evidence of miniaturization in the tardigrade lineage, while cautioning that the effects of miniaturization may manifest in different ways depending on the organ or organ system under examination.


Asunto(s)
Evolución Biológica , Genoma , Tardigrada/anatomía & histología , Tardigrada/genética , Animales , Tamaño Corporal , Tardigrada/crecimiento & desarrollo
5.
Evodevo ; 9: 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026904

RESUMEN

BACKGROUND: Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. RESULTS: We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. CONCLUSION: Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.

6.
Dev Dyn ; 246(5): 403-416, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28198063

RESUMEN

BACKGROUND: Apoptosis is involved in various developmental processes, including cell migration and tissue and organ formation. Some of these processes are conserved across metazoans, while others are specific to particular taxa. Although the patterns of apoptosis have been investigated in arthropods, no corresponding data are available from one of their closest relatives, the Onychophora (velvet worms). RESULTS: We analyzed the patterns of apoptosis in embryos of two onychophoran species: the lecithotrophic/matrotrophic viviparous peripatopsid Euperipatoides rowelli, and the placentotrophic viviparous peripatid Principapillatus hitoyensis. Our data show that apoptosis occurs early in development and might be responsible for the degeneration of extra-embryonic tissues. Moreover, apoptosis might be involved in the morphogenesis of the ventral and preventral organs in both species and occurs additionally in the placental stalk of P. hitoyensis. CONCLUSIONS: Despite the different developmental modes in these onychophoran species, our data suggest that patterns of apoptosis are conserved among onychophorans. While apoptosis in the dorsal extra-embryonic tissue might contribute to dorsal closure-a process also known from arthropods-the involvement of apoptosis in ventral closure might be unique to onychophorans. Apoptosis in the placental stalk of P. hitoyensis is most likely a derived feature of the placentotrophic onychophorans. Developmental Dynamics 246:403-416, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Anélidos/embriología , Apoptosis/fisiología , Desarrollo Embrionario/fisiología , Morfogénesis , Animales , Artrópodos/embriología , Tipificación del Cuerpo , Organogénesis
7.
Gene Expr Patterns ; 13(8): 384-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872340

RESUMEN

The gene decapentaplegic (dpp) and its homologs are essential for establishing the dorsoventral body axis in arthropods and vertebrates. However, the expression of dpp is not uniform among different arthropod groups. While this gene is expressed along the dorsal body region in insects, its expression occurs in a mesenchymal group of cells called cumulus in the early spider embryo. A cumulus-like structure has also been reported from centipedes, suggesting that it might be either an ancestral feature of arthropods or a derived feature (=synapomorphy) uniting the chelicerates and myriapods. To decide between these two alternatives, we analysed the expression patterns of a dpp ortholog in a representative of one of the closest arthropod relatives, the onychophoran Euperipatoides rowelli. Our data revealed unique expression patterns in the early mesoderm anlagen of the antennal segment and in the dorsal and ventral extra-embryonic tissue, suggesting a divergent role of dpp in these tissues in Onychophora. In contrast, the expression of dpp in the dorsal limb portions resembles that in arthropods, except that it occurs in the mesoderm rather than in the ectoderm of the onychophoran limbs. A careful inspection of embryos of E. rowelli revealed no cumulus-like accumulation of dpp expressing cells at any developmental stage, suggesting that this feature is either a derived feature of chelicerates or a synapomorphy uniting the chelicerates and myriapods.


Asunto(s)
Expresión Génica , Invertebrados/embriología , Animales , Embrión no Mamífero/metabolismo , Extremidades/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Invertebrados/genética , Invertebrados/metabolismo , Mesodermo/metabolismo , Especificidad de Órganos , Filogenia , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA