Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441552

RESUMEN

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Asunto(s)
Células Epiteliales , Vía de Señalización Wnt , Ratones , Animales , Epitelio/metabolismo , Células Epiteliales/fisiología , Proliferación Celular , Morfogénesis , Mesodermo , Glándulas Mamarias Animales/metabolismo
2.
Int J Dev Biol ; 67(4): 109-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38174766

RESUMEN

The third meeting of the Visegrád Group Society for Developmental Biology (V4SDB) was held on September 8th-10th, 2023 in Warsaw, Poland. It was a continuation of previous meetings, the first organized in the Czech Republic in 2018 and the second in Hungary in 2021. Similarly to the previous meetings, the organizers created a friendly platform for networking and science sharing. The conference gathered an excellent group of 160 researchers working on various animal models, who during lecture and poster sessions discussed a broad range of subjects, including early embryonic development, organogenesis, genetic and epigenetic control of developmental processes, stem cells and regeneration, cellular dynamics and migration in developmental biology, and in vitro models in development and disease. Additionally, two satellite events were organized: the Young Developmental Biologists' Forum, which gave young researchers an opportunity to share and promote their work and to participate in hands-on courses, and an outreach initiative "Developmental Biology for Everyone", which presented different aspects of developmental biology to a broad audience.


Asunto(s)
Desarrollo Embrionario , Organogénesis , Animales , Humanos , Sociedades , Células Madre , Biología Evolutiva
3.
Methods Mol Biol ; 2471: 1-18, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175589

RESUMEN

Mammary gland development starts during embryogenesis, and the process continues after birth. During development, the mammary gland undergoes massive morphological and physiological alterations including growth, invasion, and branching morphogenesis providing an ideal model for stem cell and cancer biology studies. Great efforts have been made in understanding mammary gland development during puberty and adulthood; however, the process during embryogenesis is still elusive. One reason is that the tools to study tissue dynamics during development are limited, which is partially due to the lack of an ex vivo culture method. Here we describe an updated organ culture protocol of the murine embryonic mammary gland. This powerful tool allows monitoring of growth and branching morphogenesis of mammary gland ex vivo by live imaging. In addition, we introduce a novel method for culturing intact, stroma-free mammary rudiments from late gestation mouse embryos in 3D in Matrigel. This approach can be used to identify the direct stromal cues for branching morphogenesis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Animales , Femenino , Ratones , Morfogénesis , Técnicas de Cultivo de Órganos , Embarazo
4.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34042944

RESUMEN

The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Mecanotransducción Celular , Animales , Proliferación Celular , Células Epiteliales/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Hipertrofia , Queratinocitos/metabolismo , Queratinocitos/ultraestructura , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/ultraestructura , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Morfogénesis
5.
Sci Rep ; 7(1): 5049, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698625

RESUMEN

Mammary gland development begins with the appearance of epithelial placodes that invaginate, sprout, and branch to form small arborized trees by birth. The second phase of ductal growth and branching is driven by the highly invasive structures called terminal end buds (TEBs) that form at ductal tips at the onset of puberty. Ectodysplasin (Eda), a tumor necrosis factor-like ligand, is essential for the development of skin appendages including the breast. In mice, Eda regulates mammary placode formation and branching morphogenesis, but the underlying molecular mechanisms are poorly understood. Fibroblast growth factor (Fgf) receptors have a recognized role in mammary ductal development and stem cell maintenance, but the ligands involved are ill-defined. Here we report that Fgf20 is expressed in embryonic mammary glands and is regulated by the Eda pathway. Fgf20 deficiency does not impede mammary gland induction, but compromises mammary bud growth, as well as TEB formation, ductal outgrowth and branching during puberty. We further show that loss of Fgf20 delays formation of Eda-induced supernumerary mammary buds and normalizes the embryonic and postnatal hyperbranching phenotype of Eda overexpressing mice. These findings identify a hitherto unknown function for Fgf20 in mammary budding and branching morphogenesis.


Asunto(s)
Ectodisplasinas/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Maduración Sexual , Animales , Proliferación Celular , Femenino , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glándulas Mamarias Animales/embriología , Ratones Endogámicos C57BL , Fenotipo
6.
PLoS Genet ; 11(11): e1005676, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26581094

RESUMEN

Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.


Asunto(s)
Ectodisplasinas/genética , Glándulas Mamarias Humanas/crecimiento & desarrollo , Morfogénesis/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Ectodisplasinas/biosíntesis , Ectodisplasinas/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/crecimiento & desarrollo , Humanos , Glándulas Mamarias Humanas/citología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo
7.
ISRN Oncol ; 2014: 596483, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24634785

RESUMEN

Chronic myeloid leukemia (CML) results from the clonal expansion of pluripotent hematopoietic stem cells containing the active BCR/ABL fusion gene produced by a reciprocal translocation of the ABL1 gene to the BCR gene. The BCR/ABL protein displays a constitutive tyrosine kinase activity and confers on leukemic cells growth and proliferation advantage and resistance to apoptosis. Introduction of imatinib (IM) and other tyrosine kinase inhibitors (TKIs) has radically improved the outcome of patients with CML and some other diseases with BCR/ABL expression. However, a fraction of CML patients presents with resistance to this drug. Regardless of clinical profits of IM, there are several drawbacks associated with its use, including lack of eradication of the malignant clone and increasing relapse rate resulting from long-term therapy, resistance, and intolerance. Second and third generations of TKIs have been developed to break IM resistance. Clinical studies revealed that the introduction of second-generation TKIs has improved the overall survival of CML patients; however, some with specific mutations such as T315I remain resistant. Second-generation TKIs may completely replace imatinib in perspective CML therapy, and addition of third-generation inhibitors may overcome resistance induced by every form of point mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA