Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168841, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036133

RESUMEN

The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Hierro , Aguas del Alcantarillado , Oxidación-Reducción , Reactores Biológicos , Carbono
2.
Chemosphere ; 341: 140129, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690550

RESUMEN

The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Busulfano , Compuestos Férricos , Peróxido de Hidrógeno , Conductividad Eléctrica , Hollín , Compuestos Ferrosos
3.
J Hazard Mater ; 437: 129326, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35714542

RESUMEN

This study aimed at understanding the influence of the generation of oxidants in a heterogeneous way at boron-doped diamond (BDD) anode (anodic oxidation (AO)) or homogeneously in the bulk (electro-Fenton (EF)) during treatment of a textile industry wastewater. Both processes achieved high TOC removal. A yield of 95 % was obtained by combining EF with BDD anode during 6 h of treatment. The EF process was found to be faster and more efficient for discoloration of the effluent, whereas AO was more effective to limit the formation of degradation by-products in the bulk. An advantage of AO was to treat this alkaline effluent without any pH adjustment. Operating these processes under current limitation allowed optimizing energy consumption in both cases. However, using BDD anode led to the formation of very high concentration of ClO3-/ClO4- from Cl- oxidation (even at low current density), which appears as a key challenge for treatment of such effluent by AO. By comparison, EF with Pt anode strongly reduced the formation of ClO3-/ClO4-. Operating EF at low current density even maintained these concentrations below 0.5 % of the initial Cl- concentration. A trade-off should be considered between TOC removal and formation of toxic chlorinated by-products.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Boro , Diamante , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción , Industria Textil
4.
J Hazard Mater ; 404(Pt A): 124137, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049627

RESUMEN

A lot of soil (particularly, former industrial and military sites) has been contaminated by various highly toxic contaminants such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) or chlorinated solvents. Soil remediation is now required for their promotion into new industrial or real estate activities. Therefore, the soil washing (SW) process enhanced by the use of extracting agents (EAs) such as surfactants or cyclodextrins (CDs) has been developed for the removal of hydrophobic organic compounds (HOCs) from contaminated soils. The use of extracting agents allows improving the transfer of HOCs from the soil-sorbed fraction to the washing solution. However, using large amount of extracting agents is also a critical drawback for cost-effectiveness of the SW process. The aim of this review is to examine how extracting agents might be recovered from SW solutions for reuse. Various separation processes are able to recover large amounts of extracting agents according to the physicochemical characteristics of target pollutants and extracting agents. However, an additional treatment step is required for the degradation of recovered pollutants. SW solutions may also undergo degradation processes such as advanced oxidation processes (AOPs) with in situ production of oxidants. Partial recovery of extracting agents can be achieved according to operating conditions and reaction kinetics between organic compounds and oxidant species. The suitability of each process is discussed according to the various physicochemical characteristics of SW solutions. A particular attention is paid to the anodic oxidation process, which allows either a selective degradation of the target pollutants or a complete removal of the organic load depending on the operating conditions.

5.
Sci Total Environ ; 738: 140352, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806341

RESUMEN

Electro-oxidation of acetaminophen (ACT) in three different doped secondary effluents collected from a conventional Municipal Waste Water Treatment Plant (MWWTP), a MWWTP using a membrane bioreactor (WWTP MBR) and a lab-scale MBR treating source-separated urine (Urine MBR) was investigated by electro-Fenton (EF) coupled with anodic oxidation (AO) using sub-stoichiometric titanium oxide anode (Ti4O7). After 8 h of treatment, 90 ± 15%, 76 ± 3.8% and 46 ± 1.3% of total organic carbon removal was obtained for MWWTP, MWWTP-MBR and Urine-MBR respectively, at a current intensity of 250 mA, pH of 3 and [Fe2+] = 0.2 mM. Faster degradation of ACT was observed in the WWTP MBR because of the lower amount of competitive organic matter, however, >99% degradation of ACT was obtained after 20 min for all effluents. The acute toxicity of the treated effluent was measured using Microtox® tests. Results showed an initial increase in toxicity, which could be assigned to formation of more toxic by-products than parent compounds. From 3D excitation and emission matrix fluorescence (3DEEM), different reactivity was observed according to the nature of the organic matter. Particularly, an increase of low molecular weight organic compounds fluorescence was observed during Urine MBR treatment. This could be linked to the slow decrease of the acute toxicity during Urine MBR treatment and ascribed to the formation and recalcitrance of toxic organic nitrogen and chlorinated organic by-products. By comparison, the acute toxicity of other effluents decreased much more rapidly. Finally, energy consumption was calculated according to the objective to achieve (degradation, absence of toxicity, mineralization).


Asunto(s)
Acetaminofén , Aguas Residuales , Reactores Biológicos , Compuestos Orgánicos , Oxidación-Reducción
6.
Membranes (Basel) ; 10(5)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429328

RESUMEN

In recent years, electrochemical methods utilizing reactive electrochemical membranes (REM) have been considered as a promising technology for efficient degradation and mineralization of organic compounds in natural, industrial and municipal wastewaters. In this paper, we propose a two-dimensional (2D) convection-diffusion-reaction model concerning the transport and reaction of organic species with hydroxyl radicals generated at a TiOx REM operated in flow-through mode. It allows the determination of unknown parameters of the system by treatment of experimental data and predicts the behavior of the electrolysis setup. There is a good agreement in the calculated and experimental degradation rate of a model pollutant at different permeate fluxes and current densities. The model also provides an understanding of the current density distribution over an electrically heterogeneous surface and its effect on the distribution profile of hydroxyl radicals and diluted species. It was shown that the percentage of the removal of paracetamol increases with decreasing the pore radius and/or increasing the porosity. The effect becomes more pronounced as the current density increases. The model highlights how convection, diffusion and reaction limitations have to be taken into consideration for understanding the effectiveness of the process.

7.
Chemosphere ; 253: 126659, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32278912

RESUMEN

Combination of the electro-Fenton process with a post-biological treatment could represent a cost-effective solution for application of electrochemical advanced oxidation processes. The objective of this study was to assess this treatment strategy in the case of a complex pharmaceutical mixture. First, main operating parameters ([Fe2+] and current) of the electro-Fenton process were optimized. An optimal concentration of 0.2 mM of Fe2+ was obtained for mineralization of the pharmaceutical mixture. An optimal current of 400 mA was also obtained for degradation of caffeine and 5-fluorouracil in the mixture. However, mineralization of the effluent was continuously improved when increasing the current owing to the promotion of mineralization of organic compounds at the BDD anode. Besides, energy efficiency was decreased at prolonged treatment time because of mass transport limitation. Interestingly, it was observed a strong biodegradability enhancement of the solution after short treatment times (<3 h) at 500 and 1000 mA, which can be related to the degradation of parent compounds into more biodegradable by-products. The need for an acclimation time of the biomass to the pre-treated effluent was also emphasized, most probably because of the formation of some toxic by-products as observed during acute toxicity tests. Therefore, a biological post-treatment could represent a cost-effective solution for the removal of biodegradable residual organic compounds as well as for the removal of nitrogen released from mineralization of organic compounds under the form of NO3- and NH4+ during electro-Fenton pre-treatment.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Electrodos , Peróxido de Hidrógeno/química , Nitrógeno , Oxidación-Reducción
8.
Water Res ; 162: 446-455, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301474

RESUMEN

The objective of this study was to implement electrochemical advanced oxidation processes (EAOPs) for mineralization and biodegradability enhancement of nanofiltration (NF) concentrate from landfill leachate initially pre-treated in a membrane bioreactor (MBR). Raw carbon felt (CF) or FeIIFeIII layered double hydroxides-modified CF were used for comparing the efficiency of homogeneous and heterogeneous electro-Fenton (EF), respectively. The highest mineralization rate was obtained by heterogeneous EF: 96% removal of dissolved organic carbon (DOC) was achieved after 8 h of electrolysis at circumneutral initial pH (pH0 = 7.9) and at 8.3 mA cm-2. However, the most efficient treatment strategy appeared to be heterogeneous EF at 4.2 mA cm-2 combined with anodic oxidation using Ti4O7 anode (energy consumption = 0.11 kWh g-1 of DOC removed). Respirometric analyses under similar conditions than in the real MBR emphasized the possibility to recirculate the NF retentate towards the MBR after partial mineralization by EAOPs in order to remove the residual biodegradable by-products and improve the global cost effectiveness of the process. Further analyses were also performed in order to better understand the fate of organic and inorganic species during the treatment, including acute toxicity tests (Microtox®), characterization of dissolved organic matter by three-dimensional fluorescence spectroscopy, evolution of inorganic ions (ClO3-, NH4+ and NO3-) and identification/quantification of degradation by-products such as carboxylic acids. The obtained results emphasized the interdependence between the MBR process and EAOPs in a combined treatment strategy. Improving the retention in the MBR of colloidal proteins would improve the effectiveness of EAOPs because such compounds were identified as the most refractory. Enhanced nitrification would be also required in the MBR because of the release of NH4+ from mineralization of refractory organic nitrogen during EAOPs.


Asunto(s)
Contaminantes Químicos del Agua , Electrodos , Compuestos Férricos , Peróxido de Hidrógeno , Oxidación-Reducción
9.
Environ Sci Technol ; 52(13): 7450-7457, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29856620

RESUMEN

An electro-Fenton (EF) based technology using activated carbon (AC) fiber as cathode and BDD as anode has been investigated for both regeneration of AC and mineralization of organic pollutants. The large specific surface area and low intraparticle diffusion resistance of AC tissue resulted in high maximum adsorption capacity of phenol (PH) (3.7 mmol g-1) and fast adsorption kinetics. Spent AC tissue was subsequently used as the cathode during the EF process. After 6 h of treatment at 300 mA, 70% of PH was removed from the AC surface. The effectiveness of the process is ascribed to (i) direct oxidation of adsorbed PH by generated hydroxyl radicals, (ii) continuous shift of adsorption equilibrium due to oxidation of organic compounds in the bulk, and (iii) local pH change leading to electrostatic repulsive interactions. Moreover, 91% of PH removed from AC was completely mineralized, thus avoiding adsorption of degradation byproducts and accumulation of toxic compounds such as benzoquinone. Morphological and chemical characteristics of AC were not affected due to the effect of cathodic polarization protection. AC tissue was successfully reused during 10 cycles of adsorption/regeneration with regeneration efficiency ranging from 65 to 78%, in accordance with the amount of PH removed from the AC surface.


Asunto(s)
Fibra de Carbono , Contaminantes Químicos del Agua , Carbono , Carbón Orgánico , Electrodos , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción
10.
Chemosphere ; 208: 159-175, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29864707

RESUMEN

Electro-oxidation processes are promising options for the removal of organic pollutants from water. The major appeal of these technologies is the possibility to avoid the addition of chemical reagents. However, a major limitation is associated with slow mass transfer that reduces the efficiency and hinders the potential for large-scale application of these technologies. Therefore, improving the reactor configuration is currently one of the most important areas for research and development. The recent development of a reactive electrochemical membrane (REM) as a flow-through electrode has proven to be a breakthrough innovation, leading to both high electrochemically active surface area and convection-enhanced mass transport of pollutants. This review summarizes the current state of the art on REMs for the electro-oxidation of organic compounds by anodic oxidation. Specific focuses on the electroactive surface area, mass transport, reactivity, fouling and stability of REMs are included. Recent advances in the development of sub-stoichiometric titanium oxide REMs as anodes have been made. These electrodes possess high electrical conductivity, reactivity (generation of •OH), chemical/electrochemical stability, and suitable pore structure that allows for efficient mass transport. Further development of REMs strongly relies on the development of materials with suitable physico-chemical characteristics that produce electrodes with efficient mass transport properties, high electroactive surface area, high reactivity and long-term stability.


Asunto(s)
Electroquímica/métodos , Membranas Artificiales , Compuestos Orgánicos/química , Titanio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Electrodos , Oxidación-Reducción
11.
Water Res ; 131: 310-319, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29306202

RESUMEN

Reactive Electrochemical Membrane (REM) prepared from carbothermal reduction of TiO2 is used for the mineralization of biorefractory pollutants during filtration operation. The mixture of Ti4O7 and Ti5O9 Magnéli phases ensures the high reactivity of the membrane for organic compound oxidation through •OH mediated oxidation and direct electron transfer. In cross-flow filtration mode, convection-enhanced mass transport of pollutants can be achieved from the high membrane permeability (3300 LMH bar-1). Mineralization efficiency of oxalic acid, paracetamol and phenol was assessed as regards to current density, transmembrane pressure and feed concentration. Unprecedented high removal rates of total organic carbon and mineralization current efficiency were achieved after a single passage through the REM, e.g. 47 g m-2 h-1 - 72% and 6.7 g m-2 h-1 - 47% for oxalic acid and paracetamol, respectively, at 15 mA cm-2. However, two mechanisms have to be considered for optimization of the process. When the TOC flux is too high with respect to the current density, aromatic compounds polymerize in the REM layer where only direct electron transfer occurs. This phenomenon decreases the oxidation efficiency and/or increases REM fouling. Besides, O2 bubbles sweeping at high permeate flux promotes O2 gas generation, with adverse effect on oxidation efficiency.


Asunto(s)
Técnicas Electroquímicas/métodos , Titanio/química , Contaminantes Químicos del Agua/química , Acetaminofén/química , Técnicas Electroquímicas/instrumentación , Electrodos , Filtración/instrumentación , Filtración/métodos , Membranas Artificiales , Microscopía Electrónica de Rastreo , Compuestos Orgánicos/química , Ácido Oxálico/química , Oxidación-Reducción , Fenol/química , Fenoles/química , Eliminación de Residuos Líquidos/métodos , Difracción de Rayos X
12.
Environ Sci Pollut Res Int ; 25(21): 20283-20292, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28144861

RESUMEN

Electro-Fenton (EF), an advanced oxidation process, can be combined with a biological process for efficient treatment of wastewater containing refractory pollutants such as pharmaceuticals. In this study, a biological process was implemented in a sequencing batch reactor (SBR), which was either preceded or followed by EF treatment. The main goal was to evaluate the potential of two sequences of a combined electrochemical-biological process: EF/SBR and SBR/EF for the treatment of real wastewater spiked with 0.1 mM of caffeine and 5-fluorouracil. The biological removal of COD and pharmaceuticals was improved by extending the acclimation time and increasing concentration of biomass in the SBR. Hardly biodegradable caffeine and COD were completely removed during the EF post-treatment (SBR/EF). During the EF/SBR sequence, complete removal of pharmaceuticals was achieved by EF within 30 min at applied current 800 mA. With a current of 500 and 800 mA, the initially very low BOD5/COD ratio increased up to 0.38 and 0.58, respectively, after 30 min. The efficiency of the biological post-treatment was influenced by the biodegradability enhancement after EF pre-treatment. The choice of an adequate sequence of such a combined process is significantly related to the wastewater characteristics as well as the treatment objectives.


Asunto(s)
Preparaciones Farmacéuticas , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Biodegradación Ambiental , Productos Biológicos , Cafeína , Industria Farmacéutica , Electroquímica , Fluorouracilo , Hospitales , Humanos , Peróxido de Hidrógeno , Oxidación-Reducción , Eliminación de Residuos Líquidos
13.
Water Res ; 118: 1-11, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28411528

RESUMEN

Formation of micelles at high surfactant concentration strongly modifies organic pollutant oxidation mechanisms and kinetics during anodic oxidation (AO) using boron doped diamond (BDD) anode. Results presented and discussed in this study emphasized the following mechanisms: (i) micelles act as a protective environment and reduce the availability of target molecules towards BDD(•OH); (ii) the use of low current density strongly reduces micelle degradation kinetics due to both steric hindrance phenomenon for oxidation of micelles at the BDD surface and decrease of mediated oxidation in the bulk; (iii) compounds solubilized in surfactant-containing solutions can be either oxidized after degradation of the protective environment formed by micelles or if they are present as free extra-micellar compounds. Therefore, selective degradation of organic compounds entrapped in micelles can be achieved by using low current density and high surfactant concentration. In fact, these operating conditions strongly hinder micelle oxidation, while free (extra-micellar) compounds can still be oxidized. Then, the remaining entrapped compounds can also be continuously released in the aqueous phase, according to the micellar/aqueous phase partitioning coefficient (Km). These results have been applied for the treatment of a real polycyclic aromatic hydrocarbon-containing soil washing (SW) solution. After 23 h of treatment at 2.1 mA cm-2, 83% of phenanthrene, 90% of anthracene, 77% of pyrene and 75% of fluoranthene were degraded and the treated SW solution was reused for an additional SW step with only 5% lower extraction capacity than a fresh TW80 solution. A comparative study highlighted the superiority of this treatment strategy, compared to the use of activated carbon for selective adsorption of polycyclic aromatic hydrocarbons and SW solution reuse.


Asunto(s)
Micelas , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Suelo , Solubilidad , Tensoactivos
14.
J Hazard Mater ; 327: 206-215, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28068645

RESUMEN

Tar oil contamination is a major environmental concern due to health impacts of polycyclic aromatic hydrocarbons (PAH) and the difficulty of reaching acceptable remediation end-points. Six tar oil-contaminated soils with different industrial histories were compared to investigate contamination characteristics by black particles. Here we provide a simple method tested on 6 soils to visualize and identify large amounts of black particles (BP) as either solid aggregates of resinified and weathered tar oil or various wood/coke/coal-like materials derived from the contamination history. These materials contain 2-10 times higher PAH concentrations than the average soil and were dominantly found in the sand fraction containing 42-86% of the total PAH. The PAH contamination in the different granulometric fractions was directly proportional to the respective total organic carbon content, since the PAH were associated to the carbonaceous particulate materials. Significantly lower (bio)availability of PAH associated to these carbonaceous phases is widely recognized, thus limiting the efficiency of remediation techniques. We provide a conceptual model of the limited mass transfer of PAH from resinated tar oil phases to the water phase and emphasize the options to physically separate BP based on their lower bulk density and slower settling velocity.

15.
J Hazard Mater ; 306: 149-174, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26707974

RESUMEN

The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed.


Asunto(s)
Compuestos Orgánicos/química , Contaminantes del Suelo/química , Restauración y Remediación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...