Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Biomed Inform ; 117: 103748, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774203

RESUMEN

OBJECTIVE: Identifying symptoms and characteristics highly specific to coronavirus disease 2019 (COVID-19) would improve the clinical and public health response to this pandemic challenge. Here, we describe a high-throughput approach - Concept-Wide Association Study (ConceptWAS) - that systematically scans a disease's clinical manifestations from clinical notes. We used this method to identify symptoms specific to COVID-19 early in the course of the pandemic. METHODS: We created a natural language processing pipeline to extract concepts from clinical notes in a local ER corresponding to the PCR testing date for patients who had a COVID-19 test and evaluated these concepts as predictors for developing COVID-19. We identified predictors from Firth's logistic regression adjusted by age, gender, and race. We also performed ConceptWAS using cumulative data every two weeks to identify the timeline for recognition of early COVID-19-specific symptoms. RESULTS: We processed 87,753 notes from 19,692 patients subjected to COVID-19 PCR testing between March 8, 2020, and May 27, 2020 (1,483 COVID-19-positive). We found 68 concepts significantly associated with a positive COVID-19 test. We identified symptoms associated with increasing risk of COVID-19, including "anosmia" (odds ratio [OR] = 4.97, 95% confidence interval [CI] = 3.21-7.50), "fever" (OR = 1.43, 95% CI = 1.28-1.59), "cough with fever" (OR = 2.29, 95% CI = 1.75-2.96), and "ageusia" (OR = 5.18, 95% CI = 3.02-8.58). Using ConceptWAS, we were able to detect loss of smell and loss of taste three weeks prior to their inclusion as symptoms of the disease by the Centers for Disease Control and Prevention (CDC). CONCLUSION: ConceptWAS, a high-throughput approach for exploring specific symptoms and characteristics of a disease like COVID-19, offers a promise for enabling EHR-powered early disease manifestations identification.


Asunto(s)
COVID-19/diagnóstico , Procesamiento de Lenguaje Natural , Evaluación de Síntomas/métodos , Adulto , Ageusia , Prueba de Ácido Nucleico para COVID-19 , Tos , Femenino , Fiebre , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Estados Unidos
3.
J Biomed Inform ; 98: 103270, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445983

RESUMEN

OBJECTIVE: Discovering subphenotypes of complex diseases can help characterize disease cohorts for investigative studies aimed at developing better diagnoses and treatments. Recent advances in unsupervised machine learning on electronic health record (EHR) data have enabled researchers to discover phenotypes without input from domain experts. However, most existing studies have ignored time and modeled diseases as discrete events. Uncovering the evolution of phenotypes - how they emerge, evolve and contribute to health outcomes - is essential to define more precise phenotypes and refine the understanding of disease progression. Our objective was to assess the benefits of an unsupervised approach that incorporates time to model diseases as dynamic processes in phenotype discovery. METHODS: In this study, we applied a constrained non-negative tensor-factorization approach to characterize the complexity of cardiovascular disease (CVD) patient cohort based on longitudinal EHR data. Through tensor-factorization, we identified a set of phenotypic topics (i.e., subphenotypes) that these patients established over the 10 years prior to the diagnosis of CVD, and showed the progress pattern. For each identified subphenotype, we examined its association with the risk for adverse cardiovascular outcomes estimated by the American College of Cardiology/American Heart Association Pooled Cohort Risk Equations, a conventional CVD-risk assessment tool frequently used in clinical practice. Furthermore, we compared the subsequent myocardial infarction (MI) rates among the six most prevalent subphenotypes using survival analysis. RESULTS: From a cohort of 12,380 adult CVD individuals with 1068 unique PheCodes, we successfully identified 14 subphenotypes. Through the association analysis with estimated CVD risk for each subtype, we found some phenotypic topics such as Vitamin D deficiency and depression, Urinary infections cannot be explained by the conventional risk factors. Through a survival analysis, we found markedly different risks of subsequent MI following the diagnosis of CVD among the six most prevalent topics (p < 0.0001), indicating these topics may capture clinically meaningful subphenotypes of CVD. CONCLUSION: This study demonstrates the potential benefits of using tensor-decomposition to model diseases as dynamic processes from longitudinal EHR data. Our results suggest that this data-driven approach may potentially help researchers identify complex and chronic disease subphenotypes in precision medicine research.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Registros Electrónicos de Salud , Informática Médica/métodos , Centros Médicos Académicos , Algoritmos , Bases de Datos Factuales , Humanos , Infarto del Miocardio/complicaciones , Fenotipo , Medicina de Precisión , Riesgo , Factores de Riesgo , Sociedades Médicas , Estados Unidos , Aprendizaje Automático no Supervisado , Infecciones Urinarias/complicaciones , Infecciones Urinarias/diagnóstico , Deficiencia de Vitamina D/complicaciones
5.
J Am Med Inform Assoc ; 24(e1): e79-e86, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539197

RESUMEN

OBJECTIVE: The goal of this study was to develop a practical framework for recognizing and disambiguating clinical abbreviations, thereby improving current clinical natural language processing (NLP) systems' capability to handle abbreviations in clinical narratives. METHODS: We developed an open-source framework for clinical abbreviation recognition and disambiguation (CARD) that leverages our previously developed methods, including: (1) machine learning based approaches to recognize abbreviations from a clinical corpus, (2) clustering-based semiautomated methods to generate possible senses of abbreviations, and (3) profile-based word sense disambiguation methods for clinical abbreviations. We applied CARD to clinical corpora from Vanderbilt University Medical Center (VUMC) and generated 2 comprehensive sense inventories for abbreviations in discharge summaries and clinic visit notes. Furthermore, we developed a wrapper that integrates CARD with MetaMap, a widely used general clinical NLP system. RESULTS AND CONCLUSION: CARD detected 27 317 and 107 303 distinct abbreviations from discharge summaries and clinic visit notes, respectively. Two sense inventories were constructed for the 1000 most frequent abbreviations in these 2 corpora. Using the sense inventories created from discharge summaries, CARD achieved an F1 score of 0.755 for identifying and disambiguating all abbreviations in a corpus from the VUMC discharge summaries, which is superior to MetaMap and Apache's clinical Text Analysis Knowledge Extraction System (cTAKES). Using additional external corpora, we also demonstrated that the MetaMap-CARD wrapper improved MetaMap's performance in recognizing disorder entities in clinical notes. The CARD framework, 2 sense inventories, and the wrapper for MetaMap are publicly available at https://sbmi.uth.edu/ccb/resources/abbreviation.htm . We believe the CARD framework can be a valuable resource for improving abbreviation identification in clinical NLP systems.


Asunto(s)
Abreviaturas como Asunto , Registros Electrónicos de Salud , Aprendizaje Automático , Procesamiento de Lenguaje Natural , Humanos , Alta del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...