Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 450, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684947

RESUMEN

Quantifying the potential spatial spread of an infectious pathogen is key to defining effective containment and control strategies. The aim of this study is to estimate the risk of SARS-CoV-2 transmission at different distances in Italy before the first regional lockdown was imposed, identifying important sources of national spreading. To do this, we leverage on a probabilistic model applied to daily symptomatic cases retrospectively ascertained in each Italian municipality with symptom onset between January 28 and March 7, 2020. Results are validated using a multi-patch dynamic transmission model reproducing the spatiotemporal distribution of identified cases. Our results show that the contribution of short-distance ( ≤ 10 k m ) transmission increased from less than 40% in the last week of January to more than 80% in the first week of March 2020. On March 7, 2020, that is the day before the first regional lockdown was imposed, more than 200 local transmission foci were contributing to the spread of SARS-CoV-2 in Italy. At the time, isolation measures imposed only on municipalities with at least ten ascertained cases would have left uncontrolled more than 75% of spillover transmission from the already affected municipalities. In early March, national-wide restrictions were required to curb short-distance transmission of SARS-CoV-2 in Italy.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , Humanos , Italia/epidemiología , Estudios Retrospectivos , Análisis Espacio-Temporal , Pandemias , Modelos Estadísticos
2.
Lancet Planet Health ; 8(1): e30-e40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199719

RESUMEN

BACKGROUND: Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS: We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS: In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION: Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING: EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Fiebre Chikungunya/epidemiología , Europa (Continente)/epidemiología , Infección por el Virus Zika/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...