Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 13(1): 2377830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005546

RESUMEN

Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.


Asunto(s)
Técnicas de Cocultivo , Macrófagos , Virus del Sarampión , Viroterapia Oncolítica , Virus Oncolíticos , Microambiente Tumoral , Humanos , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Microambiente Tumoral/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Virus Oncolíticos/genética , Viroterapia Oncolítica/métodos , Línea Celular Tumoral , Mesotelioma Maligno/patología , Mesotelioma Maligno/terapia , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virología , Diferenciación Celular
2.
Liver Int ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847551

RESUMEN

BACKGROUND & AIMS: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS: Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS: We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS: Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.

3.
Commun Biol ; 7(1): 618, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783087

RESUMEN

Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.


Asunto(s)
Células Endoteliales , Gluconeogénesis , Fosfoenolpiruvato Carboxiquinasa (GTP) , Proteostasis , Gluconeogénesis/genética , Humanos , Células Endoteliales/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glucosa/metabolismo , Autofagia , Respuesta de Proteína Desplegada , Fosfoenolpiruvato Carboxiquinasa (ATP)
4.
Respir Res ; 25(1): 156, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581044

RESUMEN

BACKGROUND: Lung cancers represent the main cause of cancer related-death worldwide. Recently, immunotherapy alone or in combination with chemotherapy has deeply impacted the therapeutic care leading to an improved overall survival. However, relapse will finally occur, with no efficient second line treatment so far. New therapies development based on the comprehension of resistance mechanisms is necessary. However, the difficulties to obtain tumor samples before and after first line treatment hamper to clearly understand the consequence of these molecules on tumor cells and also to identify adapted second line therapies. METHODS: To overcome this difficulty, we developed multicellular tumor spheroids (MCTS) using characterized Non-Small Cell Lung Cancer (NSCLC) cell lines, monocytes from healthy donors and fibroblasts. MCTS were treated with carboplatin-paclitaxel or -gemcitabine combinations according to clinical administration schedules. The treatments impact was studied using cell viability assay, histological analyses, 3'RNA sequencing, real-time PCR, flow cytometry and confocal microscopy. RESULTS: We showed that treatments induced a decrease in cell viability and strong modifications in the transcriptomic profile notably at the level of pathways involved in DNA damage repair and cell cycle. Interestingly, we also observed a modification of genes expression considered as hallmarks of response to immune check point inhibitors and immunogenicity, particularly an increase in CD274 gene expression, coding for PD-L1. This result was validated at the protein level and shown to be restricted to tumor cells on MCTS containing fibroblasts and macrophages. This increase was also observed in an additional cell line, expressing low basal CD274 level. CONCLUSIONS: This study shows that MCTS are interesting models to study the impact of first line therapies using conditions close to clinical practice and also to identify more adapted second line or concomitant therapies for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia , Esferoides Celulares , Paclitaxel/uso terapéutico , Antígeno B7-H1
5.
Pharmacol Ther ; 242: 108347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642389

RESUMEN

While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Pronóstico , Microambiente Tumoral
6.
Nat Commun ; 13(1): 5511, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127427

RESUMEN

Since a detailed inventory of endothelial cell (EC) heterogeneity in breast cancer (BC) is lacking, here we perform single cell RNA-sequencing of 26,515 cells (including 8433 ECs) from 9 BC patients and compare them to published EC taxonomies from lung tumors. Angiogenic ECs are phenotypically similar, while other EC subtypes are different. Predictive interactome analysis reveals known but also previously unreported receptor-ligand interactions between ECs and immune cells, suggesting an involvement of breast EC subtypes in immune responses. We also identify a capillary EC subtype (LIPEC (Lipid Processing EC)), which expresses genes involved in lipid processing that are regulated by PPAR-γ and is more abundant in peri-tumoral breast tissue. Retrospective analysis of 4648 BC patients reveals that treatment with metformin (an indirect PPAR-γ signaling activator) provides long-lasting clinical benefit and is positively associated with LIPEC abundance. Our findings warrant further exploration of this LIPEC/PPAR-γ link for BC treatment.


Asunto(s)
Neoplasias de la Mama , Metformina , Neoplasias de la Mama/patología , Células Endoteliales/patología , Femenino , Humanos , Inmunidad , Ligandos , Lípidos , Metformina/farmacología , PPAR gamma/genética , ARN , Estudios Retrospectivos
8.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34585146

RESUMEN

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Asunto(s)
Encéfalo/citología , Coroides/citología , Células Endoteliales/citología , Pulmón/citología , Músculos/citología , Animales , Citometría de Flujo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
9.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34382011

RESUMEN

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Asunto(s)
Células Endoteliales/citología , Riñón/citología , Bazo/citología , Testículo/citología , Animales , Citometría de Flujo , Masculino , Ratones
11.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133923

RESUMEN

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/patología , Análisis de la Célula Individual , Animales , Línea Celular Tumoral , Células Endoteliales/patología , Femenino , Neoplasias Renales/patología , Neoplasias Pulmonares/secundario , Macrófagos/patología , Ratones Endogámicos BALB C , Células Mieloides/patología , Pericitos/patología
12.
STAR Protoc ; 2(2): 100489, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34007969

RESUMEN

Endothelial cells (ECs) from the small intestine, colon, liver, and heart have distinct phenotypes and functional adaptations that are dependent on their physiological environment. Gut ECs adapt to low oxygen, heart ECs to contractile forces, and liver ECs to low flow rates. Isolating high-purity ECs in sufficient quantities is crucial to study their functions. Here, we describe protocols combining magnetic and fluorescent activated cell sorting for rapid and reproducible EC purification from four adult murine tissues. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020).


Asunto(s)
Células Endoteliales/citología , Citometría de Flujo/métodos , Intestinos/citología , Hígado/citología , Miocardio/citología , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL
13.
J Cyst Fibros ; 20(5): 876-880, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33858770

RESUMEN

The mesenchymal conversion of epithelial cells (EMT) has been suggested as a potential contributor in cystic fibrosis (CF) disease progression. Endothelial cells (EndCs), the cells lining blood vessels, express functional CFTR and CFTR impairment promotes endothelial activation and dysfunction. However, if the mesenchymal switch also exists in CF EndCs remains uncharacterized. To understand whether the endothelial-to-mesenchymal transition (EndMT) could occur in CF, we have conducted a transcriptomic meta-analysis of primary CFTR-impaired and patient-derived EndCs, and further compared our results to data from CF epithelial cells (EpCs) where EMT has been demonstrated. As compared to EpCs, we show that CFTR-impaired EndCs display a limited signature of EndMT, and that expression of the mesenchymal inducer Twist1 remained unchanged. Nonetheless, the use of CFTR modulators reduced the expression of mesenchymal markers from CF patient-derived EndCs, suggesting an additional therapeutic added-value next to the known effect on CFTR ion transport.


Asunto(s)
Fibrosis Quística/patología , Transición Epitelial-Mesenquimal , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Progresión de la Enfermedad , Transporte Iónico , Transcriptoma
14.
Pharmacol Ther ; 223: 107805, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33465401

RESUMEN

Tumor cell vasculogenic mimicry (VM), also dubbed vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. VM is described in a plethora of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas and melanomas. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. A variety of molecular mechanisms and signal pathways participates in VM induction and formation. Due to VM's contribution on tumor progression, more VM-related strategies are being utilized for anticancer treatment. After describing the main features of VM, this review will outline the importance of the tumor microenvironment during this process, and highlight the predominant molecular targets and signaling pathways involved. These data will make it possible to discuss the importance of VM-associated mediators in antitumor therapy and how it could allow to better understand the resistance to anticancer therapy.


Asunto(s)
Carcinogénesis , Neovascularización Patológica , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Humanos , Neovascularización Patológica/tratamiento farmacológico
15.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184117

RESUMEN

Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Endoteliales/metabolismo , Humanos , Fenotipo , Transcriptoma
16.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825667

RESUMEN

Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.


Asunto(s)
Vesículas Extracelulares/patología , Neoplasias Torácicas/patología , Microambiente Tumoral , Biomarcadores de Tumor/análisis , Ensayos Clínicos como Asunto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs , Pronóstico , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/inmunología , Neoplasias Torácicas/terapia
17.
Circ Res ; 127(2): 310-329, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32833569

RESUMEN

All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.


Asunto(s)
Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiología , Humanos , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Regeneración
18.
Nucleic Acids Res ; 48(W1): W385-W394, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32392297

RESUMEN

The amount of biological data, generated with (single cell) omics technologies, is rapidly increasing, thereby exacerbating bottlenecks in the data analysis and interpretation of omics experiments. Data mining platforms that facilitate non-bioinformatician experimental scientists to analyze a wide range of experimental designs and data types can alleviate such bottlenecks, aiding in the exploration of (newly generated or publicly available) omics datasets. Here, we present BIOMEX, a browser-based software, designed to facilitate the Biological Interpretation Of Multi-omics EXperiments by bench scientists. BIOMEX integrates state-of-the-art statistical tools and field-tested algorithms into a flexible but well-defined workflow that accommodates metabolomics, transcriptomics, proteomics, mass cytometry and single cell data from different platforms and organisms. The BIOMEX workflow is accompanied by a manual and video tutorials that provide the necessary background to navigate the interface and get acquainted with the employed methods. BIOMEX guides the user through omics-tailored analyses, such as data pretreatment and normalization, dimensionality reduction, differential and enrichment analysis, pathway mapping, clustering, marker analysis, trajectory inference, meta-analysis and others. BIOMEX is fully interactive, allowing users to easily change parameters and generate customized plots exportable as high-quality publication-ready figures. BIOMEX is open source and freely available at https://www.vibcancer.be/software-tools/biomex.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Gráficos por Computador , Células Endoteliales/metabolismo , Humanos , Metabolómica/métodos , Neoplasias/mortalidad , Proteómica/métodos , Análisis de Supervivencia , Flujo de Trabajo
19.
Cell Metab ; 31(4): 862-877.e14, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268117

RESUMEN

Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.


Asunto(s)
Células Endoteliales/metabolismo , Neoplasias Pulmonares/metabolismo , Degeneración Macular/metabolismo , Neovascularización Patológica/metabolismo , Transcriptoma , Animales , Células Endoteliales/citología , Células Endoteliales/patología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...