Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Pediatr Nephrol ; 37(9): 2157-2166, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35091836

RESUMEN

BACKGROUND: Both the development of kidney function in healthy children and autoregulation ability of kidney function in patients with asymmetric kidneys are important in clinical diagnosis and treatment of kidney-related diseases, but there are however only limited studies. This study aimed to investigate development of kidney function in normal children with healthy symmetric kidneys and autoregulation of the healthy kidney compensating the functional loss of a diseased one in children with asymmetric kidneys. METHODS: Two hundred thirty-seven children (156 male, 81 female) from 0 to 20y (average 4.6y ± 5.1) undergoing 99mTc-MAG3 renography were included, comprising 134 with healthy symmetrically functioning kidneys and 103 with asymmetric kidneys. Clearance was calculated from kidney uptakes at 1-2 min. A developmental model between MAG3 clearance (CL) and patient age in normal group was identified (CL = 84.39Age0.395 ml/min, r = 0.957, p < 0.001). The clearance autoregulation rate in abnormal group with asymmetric kidneys was defined as the ratio of the measured MAG3 clearance and the normal value predicted from the renal developmental model of normal group. RESULTS: No significant difference of MAG3 clearance (p = 0.723) was found between independent abnormal group and normal group. The autoregulation rate of kidney clearance in abnormal group was 94.2% on average, and no significant differences were found between two age groups (p = 0.49), male and female (p = 0.39), and left kidney and right kidney (p = 0.92) but two different grades of asymmetric kidneys (p = 0.02). CONCLUSIONS: The healthy kidney of two asymmetric kidneys can automatically regulate total kidney function up to 94% of two symmetric kidneys in normal children.


Asunto(s)
Enfermedades Renales , Renografía por Radioisótopo , Niño , Femenino , Homeostasis , Humanos , Riñón , Masculino , Radiofármacos , Estudios Retrospectivos , Tecnecio Tc 99m Mertiatida
2.
Semin Nucl Med ; 52(2): 149-156, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34916043

RESUMEN

Nuclear medicine provides methods and techniques in that has benefited pediatric patients and their referring physicians for over 40 years. Nuclear medicine provides qualitative and quantitative information about overall and regional function of organs, systems, and lesions in the body. This involves applications in many organ systems including the skeleton, the brain, the kidneys and the heart as well as in the diagnosis and treatment of cancer. The practice of nuclear medicine requires the administration of radiopharmaceuticals which expose the patient to very low levels of ionizing radiation. Advanced approaches in the estimation of radiation dose from the internal distribution of radiopharmaceuticals in patients of various sizes and shapes have been developed in the past 20 years. Although there is considerable uncertainty in the estimation of the risk of adverse health effects from radiation at the very low exposure levels typically associated with nuclear medicine, some considers it prudent to be more cautious when applied to children as they are generally considered to be at higher risk than adults. Standard guidelines for administered activities for nuclear medicine procedures in children have been established including the North American consensus guidelines and the Paediatric Dosage Card developed by the European Association of Nuclear Medicine. As we move into the future, these guidelines would likely be reviewed in response to changes in clinical practice, a better understanding of radiation dosimetry as applied to children as well as new clinical applications, new advancements in the field with respect to both instrumentation and image reconstruction and processing.


Asunto(s)
Medicina Nuclear , Radiofármacos , Adulto , Niño , Humanos , Medicina Nuclear/métodos , Dosis de Radiación , Radiometría/métodos , Cintigrafía , Radiofármacos/efectos adversos
4.
EJNMMI Phys ; 8(1): 53, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283316

RESUMEN

99mTc-DMSA is one of the most commonly used pediatric nuclear medicine imaging agents. Nevertheless, there are no pharmacokinetic (PK) models for 99mTc-DMSA in children, and currently available pediatric dose estimates for 99mTc-DMSA use pediatric S values with PK data derived from adults. Furthermore, the adult PK data were collected in the mid-70's using quantification techniques and instrumentation available at the time. Using pediatric imaging data for DMSA, we have obtained kinetic parameters for DMSA that differ from those applicable to adults. METHODS: We obtained patient data from a retrospective re-evaluation of clinically collected pediatric SPECT images of 99mTc-DMSA in 54 pediatric patients from Boston's Children Hospital (BCH), ranging in age from 1 to 16 years old. These were supplemented by prospective data from twenty-three pediatric patients (age range: 4 months to 6 years old). RESULTS: In pediatric patients, the plateau phase in fractional kidney uptake occurs at a fractional uptake value closer to 0.3 than the value of 0.5 reported by the International Commission on Radiological Protection (ICRP) for adult patients. This leads to a 27% lower time-integrated activity coefficient in pediatric patients than in adults. Over the age range examined, no age dependency in uptake fraction at the clinical imaging time was observed. Female pediatric patients had a 17% higher fractional kidney uptake at the clinical imaging time than males (P < 0.001). CONCLUSIONS: Pediatric 99mTc-DMSA kinetics differ from those reported for adults and should be considered in pediatric patient dosimetry. Alternatively, the differences obtained in this study could reflect improved quantification methods and the need to re-examine DMSA kinetics in adults.

5.
Med Phys ; 48(8): 4249-4261, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34101855

RESUMEN

PURPOSE: 99m Tc-MDP single-photon emission computed tomography (SPECT) is an established tool for diagnosing lumbar stress, a common cause of low back pain (LBP) in pediatric patients. However, detection of small stress lesions is complicated by the low quality of SPECT, leading to significant interreader variability. The study objectives were to develop an approach based on a deep convolutional neural network (CNN) for detecting lumbar lesions in 99m Tc-MDP scans and to compare its performance to that of physicians in a localization receiver operating characteristic (LROC) study. METHODS: Sixty-five lesion-absent (LA) 99m Tc-MDP studies performed in pediatric patients for evaluating LBP were retrospectively identified. Projections for an artificial focal lesion were acquired separately by imaging a 99m Tc capillary tube at multiple distances from the collimator. An approach was developed to automatically insert lesions into LA scans to obtain realistic lesion-present (LP) 99m Tc-MDP images while ensuring knowledge of the ground truth. A deep CNN was trained using 2.5D views extracted in LP and LA 99m Tc-MDP image sets. During testing, the CNN was applied in a sliding-window fashion to compute a 3D "heatmap" reporting the probability of a lesion being present at each lumbar location. The algorithm was evaluated using cross-validation on a 99m Tc-MDP test dataset which was also studied by five physicians in a LROC study. LP images in the test set were obtained by incorporating lesions at sites selected by a physician based on clinical likelihood of injury in this population. RESULTS: The deep learning (DL) system slightly outperformed human observers, achieving an area under the LROC curve (AUCLROC ) of 0.830 (95% confidence interval [CI]: [0.758, 0.924]) compared with 0.785 (95% CI: [0.738, 0.830]) for physicians. The AUCLROC for the DL system was higher than that of two readers (difference in AUCLROC [ΔAUCLROC ] = 0.049 and 0.053) who participated to the study and slightly lower than that of two other readers (ΔAUCLROC  = -0.006 and -0.012). Another reader outperformed DL by a more substantial margin (ΔAUCLROC  = -0.053). CONCLUSION: The DL system provides comparable or superior performance than physicians in localizing small 99m Tc-MDP positive lumbar lesions.


Asunto(s)
Aprendizaje Profundo , Médicos , Niño , Humanos , Estudios Retrospectivos , Medronato de Tecnecio Tc 99m , Tomografía Computarizada de Emisión de Fotón Único
6.
J Med Imaging (Bellingham) ; 8(4): 041204, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33521164

RESUMEN

Purpose: We propose a deep learning-based anthropomorphic model observer (DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically realistic 3D defect detection task. Approach: The DeepAMO is developed based on a hypothetical model of the decision process of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised of three sequential stages: defect segmentation, defect confirmation (DC), and rating value inference. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes in clinical practice. The output is a rating value designed to reproduce a human observer's defect detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that "learns" the mapping from the features of stage 2 to the distribution of observer ratings from the human observer rating data (thus modeling inter- or intraobserver variability) using a mixture density network. We implemented and evaluated the DeepAMO in the context of Tc 99 m -DMSA SPECT imaging. A human observer study was conducted, with two medical imaging physics graduate students serving as observers. A 5 × 2 -fold cross-validation experiment was conducted to test the statistical equivalence in defect detection performance between the DeepAMO and the human observer. We also compared the performance of the DeepAMO to an unoptimized implementation of a scanning linear discriminant observer (SLDO). Results: The results show that the DeepAMO's and human observer's performances on unseen images were statistically equivalent with a margin of difference ( Δ AUC ) of 0.0426 at p < 0.05 , using 288 training images. A limited implementation of an SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human observer. Conclusion: The results show that the DeepAMO has the potential to reproduce the absolute performance, and not just the relative ranking of human observers on a clinically realistic defect detection task, and that building conceptual components of the human reading process into deep learning-based models can allow training of these models in settings where limited training images are available.

7.
Phys Med Biol ; 65(23): 235025, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263312

RESUMEN

Skeletal scintigraphy is most performed in pediatric patients using the radiopharmaceutical 99mTc labelled methylene diphosphonate (99mTc-MDP). Reference biokinetic models for 99mTc-MDP indicate 50% of the administered activity is uniformly localized to the interior bone surfaces (trabecular and cortical regions), yet imaging data clearly show some preferential uptake to the epiphyseal growth plates of the long bones. To explore the dosimetric consequences of these regional activity concentrations, we have modified mesh-type computational phantoms of the International Commission on Radiological Protection (ICRP) reference pediatric series to explicitly include geometric models of the epiphyseal growth plates (2 mm in thickness) within the left/right, distal/proximal ends of the humeri, radii, ulnae, femora, tibia, and fibulae. Bone mineral activity from the ICRP Publication 128 biokinetic model for 99mTc-MDP (ICRP 2015) was then partitioned to the growth plates at values of 0.5%, 4.4%, 8.3%, 12.2%, 16.1%, and 20%. Radiation transport simulations were performed to compute 99mTc S-values and organ dose coefficients to the soft tissues and to bone site-specific regions of spongiosa. As the percentage of bone activity assigned to the growth plates was increased (from 0.5% to 20%), absorbed doses to the soft tissue organs, active bone marrow, bone endosteum (BE), as well as the detriment-weighted dose, were shown to decrease from their nominal values (no substantial growth plate activity), while epiphyseal plate self-doses increased. In the 15 year old male phantom, moving from 0.5% to 20% relative bone activity within the epiphyseal plates resulted in a 15% reduction in active marrow (AM) and BE dose, a 10% reduction in mean soft tissue and detriment-weighted dose, and a 6.3-fold increase in epiphyseal plate self-dose. In the newborn female phantom, we observed a 18% decrease in AM and BE dose, a 10% decrease in mean soft tissue dose, a 15% decrease in detriment-weighted dose, and 12.8-fold increase in epiphyseal plate self-dose. Increases (to 3 mm) and decreases (to 1 mm) in the assumed growth plate thickness of our models were shown to impact only the growth plate self-dose. Future work in differential quantification of 99mTc-MDP activity-growth plates versus other bone surfaces-is required to provide clinically realistic data on activity partitioning as a function of patient age, and perhaps skeletal site. The phantom series presented here may be used to develop more optimized age-related guidance on 99mTc-MDP administered activities to children.


Asunto(s)
Huesos/diagnóstico por imagen , Placa de Crecimiento/metabolismo , Medronato de Tecnecio Tc 99m/metabolismo , Adolescente , Transporte Biológico , Huesos/metabolismo , Niño , Preescolar , Femenino , Placa de Crecimiento/diagnóstico por imagen , Humanos , Recién Nacido , Masculino , Radiometría , Cintigrafía , Tomografía Computarizada por Rayos X
8.
Phys Med Biol ; 65(23): 235026, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245053

RESUMEN

Current guidelines for administered activity (AA) in pediatric nuclear medicine imaging studies are based on a 2016 harmonization of the 2010 North American Consensus guidelines and the 2007 European Association of Nuclear Medicine pediatric dosage card. These guidelines assign AA scaled to patient body mass, with further constraints on maximum and minimum values of radiopharmaceutical activity. These guidelines, however, are not formulated based upon a rigor-ous evaluation of diagnostic image quality. In a recent study of the renal cortex imaging agent 99mTc-DMSA (Li Y et al 2019), body mass-based dosing guidelines were shown to not give the same level of image quality for patients of differing body mass. Their data suggest that patient girth at the level of the kidneys may be a better morphometric parameter to consider when selecting AA for renal nuclear medicine imaging. The objective of the present work was thus to develop a dedicated series of computational phantoms to support image quality and organ dose studies in pediatric renal imaging using 99mTc-DMSA or 99mTc-MAG3. The final library consists of 50 male and female phantoms of ages 0 to 15 years, with percentile variations (5th to 95th) in waist circumference (WC) at each age. For each phantom, nominal values of kidney volume, length, and depth were incorporated into the phantom design. Organ absorbed doses, detriment-weighted doses, and stochastic risks were assessed using ICRP reference biokinetic models for both agents. In Monte Carlo radiation transport simulations, organ doses for these agents yielded detriment-weighted dose coefficients (mSv/MBq) that were in general larger than current ICRP values of the effective dose coefficients (age and WC-averaged ratios of eDW/e were 1.40 for the male phantoms and 1.49 for the female phantoms). Values of risk index (ratio of radiation-induced to natural background cancer incidence risk x 100) varied between 0.062 (newborns) to 0.108 (15-year-olds) for 99mTc-DMSA and between 0.026 (newborns) to 0.122 (15-year-olds) for 99mTc-MAG3. Using tallies of photon exit fluence as a rough surrogate for uniform image quality, our study demonstrated that through body region-of-interest optimization of AA, there is the potential for further dose and risk reductions of between factors of 1.5 to 3.0 beyond simple weight-based dosing guidance.


Asunto(s)
Diagnóstico por Imagen/instrumentación , Riñón/diagnóstico por imagen , Fantasmas de Imagen , Ácido Dimercaptosuccínico de Tecnecio Tc 99m , Tecnecio Tc 99m Mertiatida , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Método de Montecarlo , Medición de Riesgo
9.
Med Phys ; 46(11): 4847-4856, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31448427

RESUMEN

PURPOSE: In the current clinical practice, administered activity (AA) for pediatric molecular imaging is often based on the North American expert consensus guidelines or the European Association of Nuclear Medicine dosage card, both of which were developed based on the best clinical practice. These guidelines were not formulated using a rigorous evaluation of diagnostic image quality (IQ) relative to AA. In the guidelines, AA is determined by a weight-based scaling of the adult AA, along with minimum and maximum AA constraints. In this study, we use task-based IQ assessment methods to rigorously evaluate the efficacy of weight-based scaling in equalizing IQ using a population of pediatric patients of different ages and body weights. METHODS: A previously developed projection image database was used. We measured task-based IQ, with respect to the detection of a renal functional defect at six different AA levels (AA relative to the AA obtained from the guidelines). IQ was assessed using an anthropomorphic model observer. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) served as a figure-of-merit for task performance. In addition, we investigated patient girth (circumference) as a potential improved predictor of the IQ. RESULTS: The data demonstrate a monotonic and modestly saturating increase in AUC with increasing AA, indicating that defect detectability was limited by quantum noise and the effects of object variability were modest over the range of AA levels studied. The AA for a given value of the AUC increased with increasing age. The AUC vs AA plots for all the patient ages indicate that, for the current guidelines, the newborn and 10- and 15-yr phantoms had similar IQ for the same AA suggested by the North American expert consensus guidelines, but the 5- and 1-yr phantoms had lower IQ. The results also showed that girth has a stronger correlation with the needed AA to provide a constant AUC for 99m Tc-DMSA renal SPECT. CONCLUSIONS: The results suggest that (a) weight-based scaling is not sufficient to equalize task-based IQ for patients of different weights in pediatric 99m Tc-DMSA renal SPECT; and (b) patient girth should be considered instead of weight in developing new administration guidelines for pediatric patients.


Asunto(s)
Peso Corporal , Guías de Práctica Clínica como Asunto , Ácido Dimercaptosuccínico de Tecnecio Tc 99m , Tomografía Computarizada de Emisión de Fotón Único/métodos , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Control de Calidad , Ácido Dimercaptosuccínico de Tecnecio Tc 99m/administración & dosificación , Tomografía Computarizada de Emisión de Fotón Único/normas
12.
J Pediatr Gastroenterol Nutr ; 68(1): 68-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256266

RESUMEN

OBJECTIVES: Chronic acalculous cholecystitis (CAC) increasingly is being diagnosed as a cause of recurring biliary symptoms in children, but its clinical diagnosis remains challenging. The primary objective was to evaluate the utility of hepatocholescintigraphy in pediatric patients with suspected CAC. A secondary objective was to describe their clinical follow-up after diagnosis. METHODS: Medical records of patients (aged 9-20 years) who underwent hepatocholescintigraphy from February 2008 to January 2012 were reviewed. Patients with gallstones, and with ≤1 year of clinical follow-up, and studies without gallbladder (GB) stimulation were excluded. GB ejection fraction (GBEF) of <35% after sincalide or fatty meal (Lipomul) stimulation were considered abnormal. Diagnosis of CAC was based on histopathology after cholecystectomy. Patients with negative GB pathology, or complete resolution of symptoms without surgery, or alternative diagnoses for persistent symptoms were considered to not have CAC. RESULTS: Eighty-three patients formed the study group (median age 14.9 years), of which 81.9% were girls. Median duration of symptoms and clinical follow-up were 6 months and 2.9 years, respectively. Fifty-two patients had at least 1 study with sincalide and 36 patients had at least 1 study with Lipomul. Initial cholescintigraphy was 95.0% sensitive and 73.0% specific in diagnosing CAC, with a negative predictive value of 97.9%. Of the 31 patients with abnormal GBEF, 22 underwent cholecystectomy with improvement in pain in 72.7%, whereas all of the 9 without surgery improved. CONCLUSIONS: Hepatocholescintigraphy is useful for excluding CAC, although the clinical implications of an abnormal GBEF need to be further defined.


Asunto(s)
Colecistitis Alitiásica/diagnóstico por imagen , Enfermedades de la Vesícula Biliar/diagnóstico por imagen , Cintigrafía/estadística & datos numéricos , Colecistitis Alitiásica/complicaciones , Adolescente , Sistema Biliar/diagnóstico por imagen , Niño , Colecistectomía/métodos , Colecistectomía/estadística & datos numéricos , Enfermedad Crónica , Femenino , Vesícula Biliar/diagnóstico por imagen , Vesícula Biliar/cirugía , Enfermedades de la Vesícula Biliar/etiología , Enfermedades de la Vesícula Biliar/cirugía , Humanos , Masculino , Valor Predictivo de las Pruebas , Cintigrafía/métodos , Sensibilidad y Especificidad , Resultado del Tratamiento , Adulto Joven
13.
Artículo en Inglés | MEDLINE | ID: mdl-30418877

RESUMEN

OBJECTIVE: More than one third of children with epilepsy have medically intractable seizures. Promising therapies, including targeted neurostimulation and surgery, depend on accurate localization of the epileptogenic zone. Ictal perfusion Single-Photon Emission Computed Tomography (SPECT) can localize the seizure focus noninvasively, with comparable accuracy to that of invasive EEG. However, multiple factors including seizure dynamics may affect its spatial specificity. METHODS: Using subtracted ictal from interictal SPECT and scalp EEG from 118 pediatric epilepsy patients (40 of whom had surgery after the SPECT studies), information theoretic measures of association and advanced statistical models, this study investigated the impact of preictal and ictal brain network dynamics on SPECT focality. RESULTS: Network dynamics significantly impacted the SPECT localization ~30 s before to ~45 s following ictal onset. Distributed early ictal connectivity changes, indicative of a rapidly evolving seizure, were negatively associated with SPECT focality. Spatially localized connectivity changes later in the seizure, indicating slower seizure propagation, were positively associated with SPECT focality. In the first ~60 s of the seizure, significantly higher network connectivity was estimated in an area overlapping with the area of hyperperfusion. Finally, ~75% of patients with Engel class 1a/1b outcomes had SPECTs that were concordant with the resected area. CONCLUSION: Slowly evolving seizures are more likely to be accurately imaged with SPECT, and the identified focus may overlap with brain regions where significant topological changes occur. SIGNIFICANCE: Measures of preictal/early ictal network dynamics may help optimize the SPECT localization, leading to improved surgical and neurostimulation outcomes in refractory epilepsy.

14.
Phys Med Biol ; 63(16): 165012, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30022768

RESUMEN

Because of the concerns associated with radiation exposure at a young age, there is an increased interest in pediatric absorbed dose estimates for imaging agents. Almost all reported pediatric absorbed dose estimates, however, have been determined using adult pharmacokinetic data with radionuclide S values that take into account the anatomical differences between adults and children based upon the older Cristy-Eckerman (C-E) stylized phantoms. In this work, we use pediatric model-derived pharmacokinetics to compare absorbed dose and effective dose estimates for 18F-FDG in pediatric patients using S values generated from two different geometries of computational phantoms. Time-integrated activity coefficients of 18F-FDG in brain, lungs, heart wall, kidneys and liver, retrospectively, calculated from 35 pediatric patients at the Boston's Children Hospital were used. The absorbed dose calculation was performed in accordance with the Medical Internal Radiation Dose method using S values generated from the University of Florida/National Cancer Institute (UF/NCI) hybrid phantoms, as well as those from C-E stylized computational phantoms. The effective dose was computed using tissue-weighting factors from ICRP Publication 60 and ICRP Publication 103 for the C-E and UF/NCI, respectively. Substantial differences in the absorbed dose estimates between UF/NCI hybrid pediatric phantoms and the C-E stylized phantoms were found for the lungs, ovaries, red bone marrow and urinary bladder wall. Large discrepancies in the calculated dose values were observed in the bone marrow; ranging between -26% to +199%. The effective doses computed by the UF/NCI hybrid phantom S values were slightly different than those seen using the C-E stylized phantoms with percent differences of -0.7%, 2.9% and 2.5% for a newborn, 1 year old and 5 year old, respectively. Differences in anatomical modeling features among computational phantoms used to perform Monte Carlo-based photon and electron transport simulations for 18F, and very likely for other radionuclides, impact internal organ dosimetry computations for pediatric nuclear medicine studies.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Radiometría/instrumentación , Radiometría/métodos , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Método de Montecarlo , Fotones , Dosis de Radiación , Exposición a la Radiación , Estudios Retrospectivos
15.
Phys Med Biol ; 63(14): 145004, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29893291

RESUMEN

Balancing the tradeoff between radiation dose, acquisition duration and diagnostic image quality is essential for medical imaging modalities involving ionizing radiation. Lower administered activities to the patient can reduce absorbed dose, but can result in reduced diagnostic image quality or require longer acquisition durations. In pediatric nuclear medicine, it is desirable to use the lowest amount of administered radiopharmaceutical activity and the shortest acquisition duration that gives sufficient image quality for clinical diagnosis. However, diagnostic image quality is a complex function of patient factors including body morphometry. In this study, we present a digital population of 90 computational anatomic phantoms that model realistic variations in body morphometry and internal anatomy. These phantoms were used to generate a large database of projection images modeling pediatric SPECT imaging using a 99mTc-DMSA tracer. We used an analytic projection code that models attenuation, spatially varying collimator-detector response, and object-dependent scatter to generate the projections. The projections for each organ were generated separately and can be subsequently scaled by parameters extracted from a pharmacokinetics model to simulate realistic tracer biodistribution, including variations in uptake, inside each relevant organ or tissue structure for a given tracer. Noise-free projection images can be obtained by summing these individual organ projections and scaling by the system sensitivity and acquisition duration. We applied this database in the context of 99mTc-DMSA renal SPECT, the most common nuclear medicine imaging procedure in pediatric patients. Organ uptake fractions based on literature values and patient studies were used. Patient SPECT images were used to verify that the sum of counts in the simulated projection images was clinically realistic. For each phantom, 384 uptake realizations, modeling random variations in the uptakes of organs of interest, were generated, producing 34 560 noise-free projection datasets (384 uptake realizations times 90 phantoms). Noisy images modeling various count levels (corresponding to different products of acquisition duration and administered activity) were generated by appropriately scaling these images and simulating Poisson noise. Acquisition duration was fixed; six count levels were simulated corresponding to projection images acquired using 25%, 50%, 75%, 100%, 125%, and 150% of the original weight-based administrated activity as computed using the North American Guidelines (Gelfand et al 2011 J. Nucl. Med. 52 318-22). Combined, a total number of 207 360 noisy projection images were generated, creating a realistic projection database for use in renal pediatric SPECT imaging research. The phantoms and projection datasets were used to calculate three surrogate indices for factors affecting image quality: renal count density, average radius of rotation, and scatter-to-primary ratio. Differences in these indices were seen across the phantoms for dosing based on current guidelines, and especially for the phantom modeling the newborn. We also performed an image quality study using an anthropomorphic model observer that demonstrates that the weight-based dose scaling does not equalize image quality as measured by the area under the receiver-operating characteristics curve. These studies suggest that a dosing procedure beyond weight-based scaling of administered activities is required to equalize image quality in pediatric renal SPECT.


Asunto(s)
Peso Corporal , Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/diagnóstico por imagen , Fantasmas de Imagen , Control de Calidad , Tomografía Computarizada de Emisión de Fotón Único/métodos , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Indicadores de Calidad de la Atención de Salud , Factores de Tiempo
18.
J Nucl Med ; 58(9): 1360-1366, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28687601

RESUMEN

No consistent guidelines exist for the acquisition of a CT scan as part of pediatric PET/CT. Given that children may be more vulnerable to the effects of ionizing radiation, it is necessary to develop methods that provide diagnostic-quality imaging when needed, in the shortest time and with the lowest patient radiation exposure. This article describes the basics of CT dosimetry and PET/CT acquisition in children. We describe the variability in pediatric PET/CT techniques, based on a survey of 19 PET/CT pediatric institutions in North America. The results of the survey demonstrated that, although most institutions used automatic tube current modulation, there remained a large variation of practice, on the order of a factor of 2-3, across sites, pointing to the need for guidelines. We introduce the approach developed at our institution for using a multiseries PET/CT acquisition technique that combines diagnostic-quality CT in the essential portion of the field of view and a low-dose technique to image the remainder of the body. This approach leads to a reduction in radiation dose to the patient while combining the PET and the diagnostic CT into a single acquisition. The standardization of pediatric PET/CT provides an opportunity for a reduction in the radiation dose to these patients while maintaining an appropriate level of diagnostic image quality.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Niño , Hospitales , Humanos , Procesamiento de Imagen Asistido por Computador , Encuestas y Cuestionarios
19.
Semin Nucl Med ; 47(2): 118-125, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28237000

RESUMEN

The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this will lead to an overall improvement in the practice of pediatric nuclear medicine by providing excellent diagnostic image quality at the lowest radiation dose possible.


Asunto(s)
Medicina Nuclear/métodos , Dosis de Radiación , Radiometría/métodos , Niño , Humanos , Modelos Biológicos , Distribución Tisular , Tomografía Computarizada por Rayos X
20.
Epilepsy Res ; 129: 59-66, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27918961

RESUMEN

OBJECTIVE: Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. METHODS: Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age=11years, (25th, 75th) quartiles=(6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. RESULTS: Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p=0.02) but not MRI findings (p=0.33), epilepsy etiology (p≥0.27) or seizure duration (p=0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). SIGNIFICANCE: Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to≤25s, although the origin of seizure onset (specifically temporal versus frontal) also significantly impacts the localization.


Asunto(s)
Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen , Convulsiones/cirugía , Tomografía Computarizada de Emisión de Fotón Único , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/cirugía , Mapeo Encefálico , Niño , Preescolar , Epilepsia Refractaria/fisiopatología , Electroencefalografía , Femenino , Humanos , Lactante , Masculino , Imagen Multimodal , Radiofármacos , Estudios Retrospectivos , Convulsiones/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA