Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 103(3): 607-615, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574950

RESUMEN

ALG8 protein-truncating variants (PTVs) have previously been described in patients with polycystic liver disease and in some cases cystic kidney disease. Given a lack of well-controlled studies, we determined whether individuals heterozygous for ALG8 PTVs are at increased risk of cystic kidney disease in a large, unselected health system-based observational cohort linked to electronic health records in Pennsylvania (Geisinger-Regeneron DiscovEHR MyCode study). Out of 174,172 patients, 236 were identified with ALG8 PTVs. Using ICD-based outcomes, patients with these variants were significantly at increased risk of having any kidney/liver cyst diagnosis (Odds Ratio 2.42, 95% confidence interval: 1.53-3.85), cystic kidney disease (3.03, 1.26-7.31), and nephrolithiasis (1.89, 1.96-2.97). To confirm this finding, blinded radiology review of computed tomography and magnetic resonance imaging studies was completed in a matched cohort of 52 thirty-plus year old ALG8 PTV heterozygotes and related non-heterozygotes. ALG8 PTV heterozygotes were significantly more likely to have cystic kidney disease, defined as four or more kidney cysts (57.7% vs. 7.7%), or bilateral kidney cysts (69.2% vs. 15.4%), but not one or more liver cyst (11.5% vs. 7.7%). In publicly available UK Biobank data, ALG8 PTV heterozygotes were at significantly increased risk of ICD code N28 (other disorders of kidney/ureter) (3.85% vs. 1.33%). ALG8 PTVs were not associated with chronic kidney disease or kidney failure in the MyCode study or the UK Biobank data. Thus, PTVs in ALG8 result in increased risk of a mild cystic kidney disease phenotype.


Asunto(s)
Quistes , Hepatopatías , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Humanos , Enfermedades Renales Poliquísticas/patología , Riñón/patología , Quistes/genética , Hepatopatías/diagnóstico , Hepatopatías/epidemiología , Hepatopatías/genética , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/epidemiología , Riñón Poliquístico Autosómico Dominante/genética , Glucosiltransferasas
2.
JAMA ; 328(24): 2412-2421, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36573973

RESUMEN

Importance: Most studies of autosomal dominant polycystic kidney disease (ADPKD) genetics have used kidney specialty cohorts, focusing on PKD1 and PKD2. These can lead to biased estimates of population prevalence of ADPKD-associated gene variants and their phenotypic expression. Objective: To determine the prevalence of ADPKD and contributions of PKD1, PKD2, and other genes related to cystic kidney disease in a large, unselected cohort. Design, Setting, and Participants: This retrospective observational study used an unselected health system-based cohort in central and northeast Pennsylvania with exome sequencing (enrolled from 2004 to 2020) and electronic health record data (up to October 2021). The genotype-first approach included the entire cohort and the phenotype-first approach focused on patients with ADPKD diagnosis codes, confirmed by chart and imaging review. Exposures: Loss-of-function (LOF) variants in PKD1, PKD2, and other genes associated with cystic kidney disease (ie, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT140, SEC61B, PKHD1, PRKCSH, SEC63); likely pathogenic missense variants in PKD1 and PKD2. Main Outcomes and Measures: Genotype-first analysis: ADPKD diagnosis code (Q61.2, Q61.3, 753.13, 753.12); phenotype-first analysis: presence of a rare variant in PKD1, PKD2, or other genes associated with cystic kidney disease. Results: Of 174 172 patients (median age, 60 years; 60.6% female; 93% of European ancestry), 303 patients had ADPKD diagnosis codes, including 235 with sufficient chart review data for confirmation. In addition to PKD1 and PKD2, LOF variants in IFT140, GANAB, and HNF1B were associated with ADPKD diagnosis after correction for multiple comparisons. Among patients with LOF variants in PKD1, 66 of 68 (97%) had ADPKD; 43 of 43 patients (100%) with LOF variants in PKD2 had ADPKD. In contrast, only 24 of 77 patients (31.2%) with a PKD1 missense variant previously classified as "likely pathogenic" had ADPKD, suggesting misclassification or variable penetrance. Among patients with ADPKD diagnosis confirmed by chart review, 180 of 235 (76.6%) had a potential genetic cause, with the majority being rare variants in PKD1 (127 patients) or PKD2 (34 patients); 19 of 235 (8.1%) had variants in other genes associated with cystic kidney disease. Of these 235 patients with confirmed ADPKD, 150 (63.8%) had a family history of ADPKD. The yield for a genetic determinant of ADPKD was higher for those with a family history of ADPKD compared with those without family history (91.3% [137/150] vs 50.6% [43/85]; difference, 40.7% [95% CI, 29.2%-52.3%]; P < .001). Previously unreported PKD1, PKD2, and GANAB variants were identified with pedigree data suggesting pathogenicity, and several PKD1 missense variants previously reported as likely pathogenic appeared to be benign. Conclusions and Relevance: This study demonstrates substantial genetic and phenotypic variability in ADPKD among patients within a regional health system in the US.


Asunto(s)
Secuenciación del Exoma , Riñón Poliquístico Autosómico Dominante , Femenino , Humanos , Masculino , Riñón/patología , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Estudios Retrospectivos , Canales Catiónicos TRPP/genética , Persona de Mediana Edad
3.
J Am Soc Nephrol ; 30(11): 2091-2102, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31395617

RESUMEN

BACKGROUND: Mutations in PKD1 or PKD2 cause typical autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic kidney disease. Dominantly inherited polycystic kidney and liver diseases on the ADPKD spectrum are also caused by mutations in at least six other genes required for protein biogenesis in the endoplasmic reticulum, the loss of which results in defective production of the PKD1 gene product, the membrane protein polycystin-1 (PC1). METHODS: We used whole-exome sequencing in a cohort of 122 patients with genetically unresolved clinical diagnosis of ADPKD or polycystic liver disease to identify a candidate gene, ALG9, and in vitro cell-based assays of PC1 protein maturation to functionally validate it. For further validation, we identified carriers of ALG9 loss-of-function mutations and noncarrier matched controls in a large exome-sequenced population-based cohort and evaluated the occurrence of polycystic phenotypes in both groups. RESULTS: Two patients in the clinically defined cohort had rare loss-of-function variants in ALG9, which encodes a protein required for addition of specific mannose molecules to the assembling N-glycan precursors in the endoplasmic reticulum lumen. In vitro assays showed that inactivation of Alg9 results in impaired maturation and defective glycosylation of PC1. Seven of the eight (88%) cases selected from the population-based cohort based on ALG9 mutation carrier state who had abdominal imaging after age 50; seven (88%) had at least four kidney cysts, compared with none in matched controls without ALG9 mutations. CONCLUSIONS: ALG9 is a novel disease gene in the genetically heterogeneous ADPKD spectrum. This study supports the utility of phenotype characterization in genetically-defined cohorts to validate novel disease genes, and provide much-needed genotype-phenotype correlations.


Asunto(s)
Quistes/etiología , Heterocigoto , Hepatopatías/etiología , Manosiltransferasas/genética , Proteínas de la Membrana/genética , Mutación , Riñón Poliquístico Autosómico Dominante/etiología , Adulto , Anciano , Anciano de 80 o más Años , Quistes/genética , Femenino , Humanos , Hepatopatías/genética , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/genética , Secuenciación del Exoma
4.
Front Cell Neurosci ; 13: 560, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920560

RESUMEN

Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.

7.
J Neurosurg ; 120(1): 120-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23870021

RESUMEN

Vein of Galen aneurysmal malformations (VGAMs) are uncommon congenital malformations arising from fistulous communication with the median vein of the prosencephalon, a primitive precursor of midline cerebral venous structures. Angiographic embolization is the primary modality for treatment given historically poor microsurgical outcomes. Only a few reports of treatment by Gamma Knife radiosurgery (GKRS) exist in the literature, and the results are variable. The authors present 2 cases of VGAM in which GKRS provided definitive treatment with good outcome: one case involving antenatal presentation of a high-output, mural-type VGAM with complex clinical course refractory to multiple embolic procedures, and the other a choroidal-type VGAM presenting with hemorrhage in an adult and without a feasible embolic approach. With discussion of these cases and review of the literature, the authors advocate inclusion of GKRS as a therapeutic option for treatment of these complex lesions.


Asunto(s)
Venas Cerebrales/anomalías , Radiocirugia/instrumentación , Malformaciones de la Vena de Galeno/cirugía , Adulto , Venas Cerebrales/diagnóstico por imagen , Venas Cerebrales/cirugía , Preescolar , Embolización Terapéutica , Humanos , Masculino , Radiografía , Resultado del Tratamiento , Malformaciones de la Vena de Galeno/diagnóstico por imagen
8.
PLoS Genet ; 5(8): e1000607, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19680541

RESUMEN

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.


Asunto(s)
Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Animales , Cóclea/citología , Cóclea/metabolismo , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Retina/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...