Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Clin Neurophysiol ; 151: 143-150, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142497

RESUMEN

OBJECTIVE: To investigate the subjective phenomenon and the neural underpinnings of tics compared with voluntary movements in patients with tic disorders. METHODS: We recorded electroencephalographic and electromyographic data while subjects completed a Libet clock paradigm. Patients and healthy volunteers reported the times of W (willing to move) and M (movement occurrence) while performing voluntary movements. This was repeated only for the patients for the tics. RESULTS: In the patients, W and M times preceding voluntary movements and tics did not significantly differ from voluntary movements of healthy volunteers. The Bereitschaftspotentials in the patients were similar to healthy volunteers. Tics were only assessable for 7 patients due to artifacts. Two subjects did not show Bereitschaftspotentials, and they reported the lowest levels of tic voluntariness. 5 subjects did not show beta band event-related desynchronization before tics. CONCLUSIONS: For patients, the sense of volition for tics is similar to that of their voluntary movements which is similar to normal. Patients showed dissociations between the Bereitschaftspotential and beta desynchronization for tics, with 5/7 showing normal Bereitschaftspotentials and 2/7 showing desynchronization. The absence of desynchronization may suggest attempts to suppress tics. SIGNIFICANCE: This physiology shows a difference for most tics compared with normal movements.


Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Humanos , Adulto , Trastornos de Tic/diagnóstico , Movimiento/fisiología , Electroencefalografía , Variación Contingente Negativa
3.
Neurosci Biobehav Rev ; 151: 105199, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119992

RESUMEN

In 1983 Benjamin Libet and colleagues published a paper apparently challenging the view that the conscious intention to move precedes the brain's preparation for movement. The experiment initiated debates about the nature of intention, the neurophysiology of movement, and philosophical and legal understanding of free will and moral responsibility. Here we review the concept of "conscious intention" and attempts to measure its timing. Scalp electroencephalographic activity prior to movement, the Bereitschaftspotential, clearly begins prior to the reported onset of conscious intent. However, the interpretation of this finding remains controversial. Numerous studies show that the Libet method for determining intent, W time, is not accurate and may be misleading. We conclude that intention has many different aspects, and although we now understand much more about how the brain makes movements, identifying the time of conscious intention is still elusive.


Asunto(s)
Intención , Volición , Humanos , Volición/fisiología , Electroencefalografía/métodos , Encéfalo/fisiología , Estado de Conciencia/fisiología , Movimiento/fisiología
4.
Front Neurosci ; 14: 574472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192259

RESUMEN

Schizophrenic patients often do not have the sense that they direct their own movements or author their own thoughts (passivity phenomena). As willing must precede movement to be causal and thus generate the sense of agency, it is possible that the timing between the senses of willing and movement is shortened in schizophrenia. We tested the subjective perception of this time interval in patients with schizophrenia using a method based on Libet's paradigm, in which subjects specify a time W - the time of willing a movement - and a time M - the time that movement occurred. Patients with schizophrenia and healthy volunteers made voluntary movements at times of their own choice while looking at a fast-rotating clock on a computer screen and reported when their movements were willed and made. We recorded surface electromyography to determine the time of actual movement, and electroencephalography to record brain potentials associated with movement. Results showed a significantly reduced interval between the reported M and W in patients with respect to the healthy volunteers (p < 0.05). Specifically, patients did not report a significant difference in the timing of W at 19 ms prior to movement onset and M at 7.4 ms prior to movement onset (p > 0.05), while the control group experienced a time W at 100 ms prior to movement onset and this differed significantly from their time M at 19 ms prior to movement onset (p < 0.01). These results suggest that patients with schizophrenia do have an altered timing of awareness of action - or an impaired judgment of the sequence of events - and that this might be etiologic in the development of the abnormal sense of agency.

5.
J Sports Med Phys Fitness ; 60(10): 1383-1389, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32536109

RESUMEN

BACKGROUND: Regular physical activity or aerobic exercise is well known to increase brain plasticity. Recent studies have reported that aerobic exercise enhances neuroplasticity and motor learning. The aim of this study was to investigate if 12 weeks' aerobic training can modify cortical excitability and motor evoked potential (MEP) responses. METHODS: Fifteen untrained males were recruited. Cortical excitability was investigated using TMS. VO2max was estimated using Cooper's test. Aerobic intervention lasted 12 weeks. The subjects performed a 6-week supervised aerobic workout, 3 times a week, at 60-75% of their maximum heart rate (HRmax). Over the following 6 weeks, they performed a supervised aerobic workout 3 times a week at 70-75% of FCmax. RESULTS: After 8 weeks of aerobic training there was a significant increase of distance covered during Cooper's test (P<0.001) and a significant increase of VO2max (P<0.001); there was also an improvement in resting motor threshold (rMT decreased from 60.5±6.6% [T0] to 55.8±5.9% [T2]; P<0.001), motor evoked potential latency decreased (from 25.3±0.8 ms [T0] to 24.1±0.8 ms [T2]; P<0.001), and motor evoked potential amplitude increased (from 0.58±0.09 mV [T0] to 0.65±0.08 mV [T2]; P<0.001). Furthermore, after 12 weeks' aerobic training there were improvements in all parameters. CONCLUSIONS: This study shows that aerobic activity seems to induce changes in cortical excitability if performed for a period longer than 4 weeks, in addition to typical cardiorespiratory benefits in previously untrained males.


Asunto(s)
Potenciales Evocados Motores/fisiología , Ejercicio Físico/fisiología , Corteza Motora/fisiología , Acondicionamiento Físico Humano/fisiología , Adulto , Prueba de Esfuerzo , Humanos , Masculino , Plasticidad Neuronal/fisiología , Acondicionamiento Físico Humano/métodos , Factores de Tiempo , Estimulación Magnética Transcraneal , Adulto Joven
6.
Front Physiol ; 9: 461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867525

RESUMEN

Emotional stability plays a key role in individual and team performance during both routine activities and management of unexpected emergencies. Using a psycho-physiological approach, the stress response was investigated in drone operators in service. Methods: Salivary α-amylase (sAA), galvanic skin response (GSR) and anxiety were assessed over a 2-h operating flight. Results: Compared to baseline values, GSR and sAA values increased in operating conditions. Moreover, these values were higher in Pilots than in Sensor Operators, indicating that their stress response was greater. These results were associated with an increase in anxiety level, highlighting a relationship between autonomic reactivity and anxiety. Conclusion: This is the first report providing experimental evidences of the stress response related to Remotely Piloted Aircraft operations.

7.
Front Physiol ; 8: 773, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29046646

RESUMEN

Aims: In women's life, menopause is characterized by significant physiological changes often associated with an increase in body mass and obesity-associated sicknesses. Numerous researches described interdependencies of estrogen deficiency, aging, and resting energy expenditure (REE) downfall in the obesity correlated with the menopause. The aim of this study was to determining whether healthy, obese menopausal women underwent HRT treatment, showed changes in their REE, autonomic asset, and assessment of oxidative stress in comparison with obese pre- and post-menopausal women. Methodology: In this study, we measured the body composition, the REE, the oxidative stress, the diet assimilation, and the autonomic nervous system activity in three groups: pre-menopause women (n = 50), post-menopause women following hormone-replacement therapy (HRT; n = 50), and post-menopause women not following HRT (n = 50). Results: In the group with HRT a significant increase of the sympathetic activity and REE was described. Finally this group showed a notable increment of oxidative stress compared with the others, and utilizing BIA instrument, the free fat mass was increased respect to the fat mass of obese women. Conclusion: The study highlights the importance of the HRT-related physiological changes that influence body weight in menopause women. This results are important because have a practical implications for prevention and/or treatment of the obesity.

8.
Front Physiol ; 8: 695, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955250

RESUMEN

Purpose: The mechanisms involved in the coordination of muscle activity are not completely known: to investigate adaptive changes in human motor cortex Transcranial magnetic stimulation (TMS) was often used. The sport models are frequently used to study how the training may affect the corticospinal system excitability: Karate represents a valuable sport model for this kind of investigations for its high levels of coordination required to athletes. This study was aimed at examining possible changes in the resting motor threshold (rMT) and in the corticospinal response in karate athletes, and at determining whether athletes are characterized by a specific value of rMT. Methods: We recruited 25 right-handed young karate athletes and 25 matched non-athletes. TMS was applied to primary motor cortex (M1). Motor evoked potential (MEP) were recorded by two electrodes placed above the first dorsal interosseous (FDI) muscle. We considered MEP latencies and amplitudes at rMT, 110% of rMT, and 120% of rMT. Results: The two groups were similar for age (p > 0.05), height (p > 0.05) and body mass (p > 0.05). The TMS had a 70-mm figure-of-eight coil and a maximum output of 2.2 T, placed over the left motor cortex. During the stimulation, a mechanical arm kept the coil tangential to the scalp, with the handle at 45° respect to the midline. The SofTaxic navigator system (E.M.S. Italy, www.emsmedical.net) was used in order to correctly identifying and repeating the stimulation for every subject. Compared to non-athletes, athletes showed a lower resting motor threshold (p < 0.001). Furthermore, athletes had a lower MEP latency (p < 0.001) and a higher MEP amplitude (p < 0.001) compared to non-athletes. Moreover, a ROC curve for rMT was found significant (area: 0.907; sensitivity 84%, specificity 76%). Conclusions: As the main finding, the present study showed significant differences in cortical excitability between athletes and non-athletes. The training can improve cortical excitability inducing athletes' modifications, as demonstrated in rMT and MEP values. These finding support the hypothesis that the sport practice determines specific brain organizations in relationship with the sport challenges.

9.
Front Physiol ; 8: 137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344558

RESUMEN

Adipose tissue, defined as white adipose tissue (WAT) and brown adipose tissue (BAT), is a biological caloric reservoir; in response to over-nutrition it expands and, in response to energy deficit, it releases lipids. The WAT primarily stores energy as triglycerides, whereas BAT dissipates chemical energy as heat. In mammals, the BAT is a key site for heat production and an attractive target to promote weight loss. The autonomic nervous system (ANS) exerts a direct control at the cellular and molecular levels in adiposity. The sympathetic nervous system (SNS) provides a complex homeostatic control to specifically coordinate function and crosstalk of both fat pads, as indicated by the increase of the sympathetic outflow to BAT, in response to cold and high-fat diet, but also by the increase or decrease of the sympathetic outflow to selected WAT depots, in response to different lipolytic requirements of these two conditions. More recently, a role has been attributed to the parasympathetic nervous system (PNS) in modulating both adipose tissue insulin-mediated glucose uptake and fatty free acid (FFA) metabolism in an anabolic way and its endocrine function. The regulation of adipose tissue is unlikely to be limited to the autonomic control, since a number of signaling cytokines and neuropeptides play an important role, as well. In this review, we report some experimental evidences about the role played by both the ANS and orexins into different fat pads, related to food intake and energy expenditure, with a special emphasis on body weight status and fat mass (FM) content.

10.
Front Neurosci ; 10: 47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941594

RESUMEN

Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.

11.
Front Neurosci ; 10: 604, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28184183

RESUMEN

Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2-4 Hz), theta (4-8 Hz Hz), alpha1 (8-10.5 Hz), and alpha2 (10.5-13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification.

12.
Clin Neurophysiol ; 124(6): 1095-105, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23433948

RESUMEN

OBJECTIVE: Obese subjects without eating disorders were characterised by poor electroencephalographic (EEG) alpha rhythms during resting-state eye-closed condition (Babiloni et al., 2011b). Is this true also for the desynchronisation of alpha rhythms during resting-state eyes opening? METHODS: EEG data were recorded in 15 underweight, 20 normal-weight, and 18 overweight/obese subjects during resting-state eyes-closed and -open conditions. EEG sources were estimated by LORETA for alpha 1 (8-10.5 Hz) and alpha 2 (10.5-13 Hz). The alpha desynchronisation was calculated as the difference eyes-open minus -closed condition. RESULTS: The occipital alpha 1 desynchronisation was lower in overweight/obese and underweight subjects compared with normal-weight subjects (p < 0.000005). The same was true for parietal, occipital and temporal alpha 2 (10.5-13 Hz) desynchronisation (p < 0.000002). The parietal and temporal alpha 1 desynchronisation was lower in overweight/obese than in normal-weight subjects (p < 0.00001). These effects spatially matched those observed in the resting-state eyes-closed condition. CONCLUSION: Subjects with abnormal weight and normal eating behaviour are characterised by poor alpha desynchronisation during resting-state eyes opening. SIGNIFICANCE: Obese subjects without eating disorders show abnormal mechanisms of cortical neural synchronisation and desynchronisation of alpha rhythms in the resting state condition.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiopatología , Sincronización de Fase en Electroencefalografía/fisiología , Obesidad/fisiopatología , Adolescente , Adulto , Antropometría , Índice de Masa Corporal , Interpretación Estadística de Datos , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pruebas Neuropsicológicas , Sobrepeso/fisiopatología , Sobrepeso/psicología , Delgadez/fisiopatología , Delgadez/psicología , Adulto Joven
13.
J Alzheimers Dis ; 26(2): 331-46, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673406

RESUMEN

Resting state electroencephalographic (EEG) rhythms do not deteriorate with the increase of white matter vascular lesion in amnesic mild cognitive impairment (MCI) subjects [1], although white matter is impaired along Alzheimer's disease (AD). Here we tested whether this is true even in AD subjects. Closed-eye resting state EEG data were recorded in 40 healthy elderly (Nold), 96 amnesic MCI, and 83 AD subjects. White matter vascular lesions were indexed by magnetic resonance imaging recorded in the MCI and AD subjects (about 42% of cases following ADNI standards). The MCI subjects were divided into two sub-groups based on the median of the white matter lesion, namely MCI+ (people with highest vascular load; n = 48) and MCI- (people with lowest vascular load; n = 48). The same was true for the AD subjects (AD+, n = 42; AD-, n = 41). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). LORETA software estimated cortical EEG sources. When compared to Nold group, MCI and AD groups showed well known abnormalities of delta and alpha sources. Furthermore, amplitude of occipital, temporal, and limbic alpha 1 sources were higher in MCI+ than MCI- group. As a novelty, amplitude of occipital delta sources was lower in AD+ than AD- group. Furthermore, central, parietal, occipital, temporal, and limbic alpha sources were higher in amplitude in AD+ than AD- group. Amplitude of these sources was correlated to global cognitive status (i.e., Mini Mental State Evaluation score). These results suggest that in amnesic MCI and AD subjects, resting state posterior delta and alpha EEG rhythms do not deteriorate with the increase of white-matter vascular lesion. These rhythms might be more sensitive to AD neurodegenerative processes and cognitive status rather than to concomitant lesions to white matter.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Corteza Cerebral/fisiopatología , Fibras Nerviosas Mielínicas/fisiología , Anciano , Enfermedad de Alzheimer/patología , Corteza Cerebral/patología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Electroencefalografía , Femenino , Humanos , Italia , Imagen por Resonancia Magnética , Masculino , Fibras Nerviosas Mielínicas/patología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...