Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256838

RESUMEN

Helianthus verticillatus (Asteraceae), a whorled sunflower, is a perennial species restricted to a few locations in the southeastern United States and is now considered endangered. Therefore, restoring and protecting H. verticillatus as a species is a priority. This study introduces a highly efficient in vitro adventitious plant regeneration system from leaf explants, utilizing five diverse specimens of H. verticillatus, each representing distinct genotypes with phenotypic variations in leaf and stem morphology. Key factors influencing in vitro morphogenesis, including genetic constitution, explant source, and plant growth regulators (PGRs), were identified. The study revealed a remarkably strong genotype-dependent impact on the regeneration efficiency of the investigated H. verticillatus genotypes, ranging from a lack of regeneration to highly effective regeneration. The selection of two genotypes with varying regeneration abilities provides valuable models for genetic analyses, offering insights into factors influencing the regeneration potential of this endangered species. Optimum adventitious shoot regeneration results were achieved using Murashige and Skoog basal media (MS) supplemented with 8.8 µM N6-benzyladenine (BA) and 1.08 µM α-naphthalene acetic acid (NAA). This combination yielded the highest adventitious shoot production. Subsequent successful rooting on ½ MS medium without PGRs further solidified the efficiency of the developed protocol. Regenerated plantlets, demonstrating robust shoots and roots, were successfully acclimatized to greenhouse conditions with a 95% survival rate. The protocol developed in this study is the first such report for this endangered species and is expected to contribute to future genetic manipulation and modification studies.

2.
Plants (Basel) ; 12(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514307

RESUMEN

Pityopsis ruthii (Small) Small, Ruth's golden aster, is an endangered Asteraceae species that grows in the riparian zone along small sections of two rivers in the Southern Appalachian Mountains of the United States of America (USA). Since 1985, the species has been listed under the Endangered Species Act by the United States Fish and Wildlife Service (USFWS). The mission of the USFWS is to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continued benefit of the American people. The agency provides national leadership in the recovery and conservation of imperiled plant species by working with the scientific community to protect important habitats, increase species' populations, and identify and reduce threats to species survival with the goal of removal from federal protection. Over the past 35 years, research efforts have focused on studies designed to delineate the range and size of populations, determine habitat requirements, reproductive and propagation potential, and understand the demographic, ecological, and genetic factors that may increase vulnerability to extinction for P. ruthii. Cooperative partnerships have driven the completion of actions called for in the strategy to recover P. ruthii, and in this review, we highlight these efforts within the context of species conservation.

3.
PLoS One ; 18(6): e0287524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352235

RESUMEN

It is critical to gather biological information about rare and endangered plants to incorporate into conservation efforts. The secondary metabolism of Pityopsis ruthii, an endangered flowering plant that only occurs along limited sections of two rivers (Ocoee and Hiwassee) in Tennessee, USA was studied. Our long-term goal is to understand the mechanisms behind P. ruthii's adaptation to restricted areas in Tennessee. Here, we profiled the secondary metabolites, specifically in flowers, with a focus on terpenes, aiming to uncover the genomic and molecular basis of terpene biosynthesis in P. ruthii flowers using transcriptomic and biochemical approaches. By comparative profiling of the nonpolar portion of metabolites from various tissues, P. ruthii flowers were rich in terpenes, which included 4 monoterpenes and 10 sesquiterpenes. These terpenes were emitted from flowers as volatiles with monoterpenes and sesquiterpenes accounting for almost 68% and 32% of total emission of terpenes, respectively. These findings suggested that floral terpenes play important roles for the biology and adaptation of P. ruthii to its limited range. To investigate the biosynthesis of floral terpenes, transcriptome data for flowers were produced and analyzed. Genes involved in the terpene biosynthetic pathway were identified and their relative expressions determined. Using this approach, 67 putative terpene synthase (TPS) contigs were detected. TPSs in general are critical for terpene biosynthesis. Seven full-length TPS genes encoding putative monoterpene and sesquiterpene synthases were cloned and functionally characterized. Three catalyzed the biosynthesis of sesquiterpenes and four catalyzed the biosynthesis of monoterpenes. In conclusion, P. ruthii plants employ multiple TPS genes for the biosynthesis of a mixture of floral monoterpenes and sesquiterpenes, which probably play roles in chemical defense and attracting insect pollinators alike.


Asunto(s)
Transferasas Alquil y Aril , Magnoliopsida , Sesquiterpenos , Terpenos/metabolismo , Vías Biosintéticas/genética , Magnoliopsida/metabolismo , Monoterpenos/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Sci Rep ; 13(1): 5343, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005396

RESUMEN

About 160 species are classified within the Viburnum genus and many of these are cultivated for horticultural purposes. The vast dispersal of Viburnum makes the genus a useful model for studying evolutionary history and inferring how species expanded into their current distributions. Simple sequence repeat (SSR) markers were previously developed for five Viburnum species that were classified within the four major clades (Laminotinus, Crenotinus, Valvatotinus, and Porphyrotinus). The ability of some of these markers to cross-amplify in Viburnum species has been scantly evaluated, but there has not been any genus-wide assessment for the markers. We evaluated a collection of 49 SSR markers for the ability to cross-amplify in 224 samples, including 46 Viburnum species, representing all 16 subclades, and five additional species in the Viburnaceae and Caprifoliaceae. A subset of 14 potentially comprehensive markers for Viburnum species was identified and evaluated for the ability to detect polymorphisms in species outside of their respective clades. The 49 markers had overall amplification success in 52% of the samples, including a 60% success rate within the Viburnum genus and 14% in other genera. The comprehensive marker set amplified alleles in 74% of all samples tested, including 85% of Viburnum samples and 19% of outgroup samples. To the best of our knowledge, this is the first comprehensive set of markers able to characterize species across an entire genus. This set of markers can be used to assess the genetic diversity and population structure of most Viburnum species and closely allied species.


Asunto(s)
Variación Genética , Viburnum , Viburnum/genética , Polimorfismo Genético , Repeticiones de Microsatélite/genética
5.
J Exp Bot ; 74(4): 1275-1290, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36433929

RESUMEN

Jasminum sambac is a well-known plant for its attractive and exceptional fragrance, the flowers of which are used to produce scented tea. Jasmonate (JA), an important plant hormone was first identified in Jasminum species. Jasmine plants contain abundant JA naturally, of which the molecular mechanisms of synthesis and accumulation are not clearly understood. Here, we report a telomere-to-telomere consensus assembly of a double-petal J. sambac genome along with two haplotype-resolved genomes. We found that gain-and-loss, positive selection, and allelic specific expression of aromatic volatile-related genes contributed to the stronger flower fragrance in double-petal J. sambac compared with single- and multi-petal jasmines. Through comprehensive comparative genomic, transcriptomic, and metabolomic analyses of double-petal J. sambac, we revealed the genetic basis of the production of aromatic volatiles and salicylic acid (SA), and the accumulation of JA under non-stress conditions. We identified several key genes associated with JA biosynthesis, and their non-stress related activities lead to extraordinarily high concentrations of JA in tissues. High JA synthesis coupled with low degradation in J. sambac results in accumulation of high JA under typical environmental conditions, similar to the accumulation mechanism of SA. This study offers important insights into the biology of J. sambac, and provides valuable genomic resources for further utilization of natural products.


Asunto(s)
Jasminum , Jasminum/genética , Perfilación de la Expresión Génica , Transcriptoma , Odorantes
6.
PLoS One ; 17(9): e0274404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36084043

RESUMEN

As the Latin name annua implies, the species Poa annua L. is thought to have an annual life cycle. Yet, there are many reports in literature of P. annua persisting as a perennial. Considering that P. annua senescence patterns do not align with other true annual species, we hypothesized that P. annua is similar to other perennial, C3 turfgrass species that are subject to a confluence of environmental factors that can cause mortality. Four experiments were conducted in Knoxville, TN with the objective of determining environmental factors lethal to P. annua. A field monitoring study assessed 100 P. annua plants across ten grassland micro-environments from May to October 2020. Forty plants survived the summer and confirmed the existence of perennial P. annua ecotypes. Analysis of environmental factors at the time of plant death indicated soil moisture, soil temperature, and pathogenic infection were associated with mortality. A series of glasshouse or field experiments were conducted to investigate the effects of each factor on P. annua mortality. Soil moisture and soil temperature were not lethal to P. annua in the glasshouse, except under extreme conditions not typical in the field. A field study assessed mortality of plants from pathogenic infection and indicated that P. annua plants treated with fungicide throughout the summer survived year-round, whereas plants not receiving fungicide applications senesced. These findings support our hypothesis that P. annua is of a perennial life cycle, which can be influenced by environmental conditions. We suggest that the name P. annua is likely a misnomer based on its modern interpretation.


Asunto(s)
Fungicidas Industriales , Poa , Fungicidas Industriales/farmacología , Suelo
7.
Plant Dis ; 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35822892

RESUMEN

Whorled sunflower, Helianthus verticillatus Small, is an endangered (U.S. Fish and Wildlife Service 2014) perennial sunflower species indigenous to the southern United States (Matthews et al. 2002; Ellis et al. 2008). Helianthus verticillatus has a showy yellow floral display in the Fall that attracts a diversity of insect visitors (Strange et al. 2020). Its hardiness in the landscape and late-season blooming makes it a potential ornamental (Trigiano et al. 2021). In June 2021, anthracnose-like lesions were observed on mature leaves collected from potted H. verticillatus plants grown in the nursery compound at the University of Tennessee, Knoxville, TN, USA. Irregularly shaped leaf spots with 1‒2 mm tan centers were observed on mature leaves, which later expanded to 3‒5 mm, and became dark brown- to- black surrounded by chlorotic halos (Fig.1). Lesions from three infected leaves were excised from a single potted plant, trimmed to 1.5-cm squares with green borders, and surface-sterilized (Trigiano et al. 2018). Tissues were placed onto potato dextrose agar (PDA), amended with 100 mg/ml of each streptomycin sulfate and chlorotetracycline, and incubated at 21 °C in the dark until axenic cultures were obtained. Initially, appressed white- to- pale gray mycelia were formed that turned light pinkish-orange with age (Fig. 2A). Conidia (Fig. 2B-C) were single-celled, hyaline, and cylindrical- to- fusiform with acute ends, and were similar to Colletotrichum fioriniae (Damm et al. 2012). Conidia measured 8.9 ± 1.3 µm long and 3.3 ± 0.6 µm wide (N=40). Genomic DNA was isolated with a Phire Direct Plant PCR kit (Thermo FisherScientific, Waltham, MA). The partial beta-tubulin (TUB2) gene, chitin synthase 1 (CHS-1) gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, and the internal transcribed spacer (ITS) region of ribosomal DNA were amplified with primers T1/BT2B, CHS-354R/CHS-79F, GDF1/GDR1, and ITS1/ITS4, respectively and sequenced (Damm et al. 2012). The resulting sequences were submitted to GenBank (TUB2, ON036471; CHS-1, ON036472; GAPDH, ON036470; and ITS, ON008206). Consensus sequences had 100% identity with C. fioriniae type culture CBS 128517 accessions JQ949943 (TUB2), JQ948953 (CHS-1), JQ948622 (GAPDH), and MH865005 (ITS rDNA). Because H. verticillatus is endangered, and the scarcity of available plant material, Koch's postulates were performed using a detached leaf assay (Boggess et al. 2022). Six healthy leaves were surface-sterilized using the previously described protocol, longitudinally bisected, and placed on 1.5% water agar in three 15 × 100 mm petri dishes. Three half leaves were inoculated with sterile, 5 mm-diameter PDA plugs (controls). The remaining three leaves were inoculated with 5 mm-diameter PDA plugs of C. fioriniae and incubated as described previously. After ten days, necrotic lesions developed on leaves inoculated with C. fioriniae and were similar to the initially observed lesions on plants. Lesions did not develop on control leaves. Colletotrichum fioriniae was re-isolated from lesions using the previously described protocol. The disease does not appear to cause mortality of H. verticillatus and does not require control measures but does reduce the aesthetic value of the plant. To the best of our knowledge, this is the first report of C. fioriniae infecting H. verticillatus in the United States.

8.
Plants (Basel) ; 11(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684218

RESUMEN

Weigela (Caprifoliaceae) is a genus of ornamental plants popular for its phenotypic variation and hardiness, that includes species hybridized to produce the commercially available cultivars. Despite its popularity, limited genetic resources exist for the genus. Twenty genomic simple sequence repeat (gSSR) markers distributed across the genome were developed using low coverage whole-genome sequencing data of Weigela Spilled Wine®. A cross-amplification evaluation with these 20 gSSR markers on a collection of 18 Weigela cultivars revealed a total of 111 unique alleles, including 36 private alleles. A diagrammatic key was constructed to identify cultivars using only six of the gSSR markers, demonstrating the newly developed gSSR markers are immediately useful for cultivar identification. Future uses could include breeding with marker-assisted selection, determining the history of hybridization of the current cultivated lines, aiding in the construction of genetic maps, and assessing the patterns of population genetic structure of Weigela spp.

9.
J Appl Genet ; 63(3): 463-467, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35524105

RESUMEN

The complete chloroplast genome of Pyrus calleryana (GenBank OM541581.1) was developed by de novo assembly from whole-genome sequencing data. Reference-guided (P. phaeocarpa) read mapping and assembly were followed by annotation and phylogenetic comparisons. The 159,965 bp P. calleryana chloroplast genome represented 36.56% GC content with a classical quadripartite architecture and two inverted repeats regions (IRs; each 26,392 bp) separating the large single-copy region (LSC; 87,942 bp) and the small single-copy region (SSC; 19.239 bp). In total, 125 unique features were annotated in that genome, including 83 protein coding genes, 38 tRNA coding genes, and 4 rRNA coding genes. Phylogenetic analyses based on the whole chloroplast genome sequences placed the P. calleryana among other Rosaceae plants, specifically among the Asian species of Pyrus.


Asunto(s)
Genoma del Cloroplasto , Pyrus , Composición de Base , Filogenia , Pyrus/genética , Secuenciación Completa del Genoma
10.
Front Genet ; 13: 861398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480304

RESUMEN

Pyrus calleryana Decne. (Callery pear) is a deciduous tree native to China, Japan, Korea, and Taiwan. It is a popular ornamental tree in the United States (US) with early spring blooms and vibrant fall color. There are at least 26 cultivars of P. calleryana available in the US of which "Bradford" is the most well-known. Open-pollinated P. calleryana escapees are becoming one of the most common invasive tree species in the eastern United States. Developing better management practices for invasive P. calleryana requires detailed knowledge about reproductive biology and genetic diversity of the species, however, little is currently known about genetic variability within those open-pollinated populations. We investigated genetic diversity and population structure of non-cultivated, escaped P. calleryana populations within a ∼177 km radius in the southeastern United States. Because P. calleryana exhibits a range of morphological variation with great evolutionary potential, we hypothesized that a high genetic diversity would be manifested among escaped P. calleryana. Using 15 previously developed microsatellite loci, we genotyped 180 open-pollinated P. calleryana individuals that were collected across six naturally occurring sites in Tennessee, Georgia, and South Carolina, United States. Our results demonstrated the presence of a population structure with high genetic diversity, high gene flow, and high genetic differentiation between individuals across collection sites. Our results revealed that P. calleryana populations had differentiated shortly after the introduction to the US, most likely from specimens imported from Asia, consistent with historical records and our prior findings. The high invasive potential of the species is perhaps best underscored by transformation of P. calleryana specimens introduced from Asia into escape populations at continental scale across the United States. Our data also provided novel insight into potential issues that could be problematic for the future as P. calleryana may pose a potential threat to the economy, ecology, and native biodiversity in invaded areas.

11.
Pest Manag Sci ; 78(2): 499-505, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34553491

RESUMEN

BACKGROUND: Turfgrass managers reported poor Eleusine indica control following applications of the mitosis-inhibiting herbicide dithiopyr in cool-season turfgrass. Field, glasshouse, and laboratory experiments were conducted to understand the response of these biotypes to dithiopyr and prodiamine. RESULTS: In field experiments at two locations with putative dithiopyr-resistant E. indica, preemergence applications of dithiopyr provided no E. indica control. Single applications of the protoporphyrinogen oxidase (PPO)-inhibitor, oxadiazon, provided > 85% control at these locations. When subjected to agar-based bioassays, root growth of putative resistant biotypes planted with 0.01 mmol L-1 dithiopyr was slightly reduced (< 25%) whereas roots were completely inhibited in the susceptible biotype. Glasshouse whole plant rate-response experiments found that the cytochrome P450 inhibitor, piperonyl butoxide (PBO), did not increase the sensitivity of these putative resistant biotypes to dithiopyr. Sequencing of α-tubulin 1 (TUA1) revealed a Leu-136-Phe substitution in both dithiopyr-resistant populations. CONCLUSION: Eleusine indica biotypes with resistance to dithiopyr are present in cool-season turfgrass systems in the United States. Resistance is possibly related to a single nucleotide polymorphism (SNP) of an α-tubulin gene. If turfgrass managers suspect resistance to dithiopyr, oxadiazon can still be an effective alternative for preemergence control. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Eleusine , Herbicidas , Eleusine/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Piridinas , Estaciones del Año
12.
Phytopathology ; 112(2): 422-434, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34058860

RESUMEN

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Peronospora , Flujo Génico , Variación Genética , Repeticiones de Microsatélite/genética , Peronospora/genética , Enfermedades de las Plantas/parasitología , Nicotiana/genética
13.
Sci Rep ; 11(1): 21803, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750401

RESUMEN

Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species' current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.


Asunto(s)
Fabaceae/genética , Variación Genética/genética , Genética de Población , Repeticiones de Microsatélite/genética , América del Norte , Filogenia
14.
Plants (Basel) ; 10(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34451610

RESUMEN

Helianthus verticillatus Small, the whorled sunflower, is a perennial species only found at a few sites in the southeastern United States and was declared federally (USA) endangered in 2014. The species spreads locally via rhizomes and can produce copious seeds when sexually compatible genotypes are present. Vegetative propagation of the species via cuttings and the optimum conditions for seed germination have not been determined. To investigate asexual propagation via cuttings, stem sections were harvested in late May, June, and July in Knoxville, Tennessee (USA) and trimmed to a minimum of two nodes. The base of the cuttings was treated with either auxin or water, and grown in a Promix BX potting medium with intermittent mist and 50% shade for one month. Seeds were harvested from a population of multiple genotypes in Maryville, Tennessee and used to determine viability and the range of temperatures suitable for germination. A clonal population was developed and used for three years to assess sexual compatibility at three locations in Knoxville, Tennessee. Ninety-five percent of the cuttings from May rooted in two-to-three weeks and formed more than 20 adventitious roots per cutting with auxin and 18 with water treatments. The ability of cuttings to root decreased in June to about 20%, and none rooted in July with either water or auxin pretreatments. Pre-germination tetrazolium tests indicated that about 91% of seeds (achenes) were viable. Subsequent germination tests revealed high germination at varying temperatures (96 to 99% of seeds (achenes) germinated at 22/11, 27/15, and 29/19 °C), whereas germination was significantly inhibited by 33/24 °C. Fifty percent of the seeds germinated at 22/11 °C in 7.5 days, whereas only 2.0 to 2.5 days were required for 50% germination at 27/15, 29/19, and 33/24 °C. Seeds were not produced at any of the clonal planting locations during the three years. Vegetative propagation via rooted cuttings was successful in the mid-spring, seed germination was possible over a wide range of temperatures, and self-incompatibility was evident in this species. The results of this study will permit fast and efficient propagation of multiple and selected genotypes for conservation, commerce, and breeding of elite cultivars with disease resistance or other desirable attributes.

15.
Front Microbiol ; 12: 686759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335513

RESUMEN

Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex.

16.
Pest Manag Sci ; 77(11): 4993-5000, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34218510

RESUMEN

BACKGROUND: Poa annua is a pervasive grassy, self-pollinating, weed that has evolved resistance to 10 different herbicide modes-of-action, third most of all weed species. We investigated constitutive overexpression of genes associated with non-target site resistance (NTSR) in POAAN-R3 and the response of those genes when treated with trifloxysulfuron despite the biotype having a known target site mutation in acetolactate synthase (ALS). RESULTS: Despite having an ALS target site mutation, POAAN-R3 still had a transcriptomic response to herbicide application that differed from a susceptible biotype. We observed differential expression of genes associated with transmembrane transport and oxidation-reduction activities, with differences being most pronounced prior to herbicide treatment. CONCLUSIONS: In the P. annua biotype we studied with confirmed target site resistance to ALS inhibitors, we also observed constitutive expression of genes regulating transmembrane transport, as well as differential expression of genes associated with oxidative stress after treatment with trifloxysulfuron. This accumulation of mechanisms, in addition to the manifestation of target site resistance, could potentially increase the chance of survival when plants are challenged by different modes of action.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Poa , Acetolactato Sintasa/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética
17.
Life (Basel) ; 11(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200292

RESUMEN

Pyrus calleryana Decne. (Callery pear) includes cultivars that in the United States are popular ornamentals in commercial and residential landscapes. Last few decades, this species has increasingly naturalized across portions of the eastern and southern US. However, the mechanisms behind this plant's spread are not well understood. The genetic relationship of present-day P.calleryana trees with their Asian P. calleryana forebears (native trees from China, Japan, and Korea) and the original specimens of US cultivars are unknown. We developed and used 18 microsatellite markers to analyze 147 Pyrus source samples and to articulate the status of genetic diversity within Asian P. calleryana and US cultivars. We hypothesized that Asian P. calleryana specimens and US cultivars would be genetically diverse and would show genetic relatedness. Our data revealed high genetic diversity, high gene flow, and presence of population structure in P. calleryana, potentially relating to the highly invasive capability of this species. Strong evidence for genetic relatedness between Asian P. calleryana specimens and US cultivars was also demonstrated. Our data suggest the source for P. calleryana that have become naturalized in US was China. These results will help understand the genetic complexity of invasive P. calleryana when developing management for escaped populations: In follow-up studies, we use the gSSRs developed here to analyze P. calleryana escape populations from across US.

18.
Plants (Basel) ; 10(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807587

RESUMEN

The Viburnum genus is of particular interest to horticulturalists, phylogeneticists, and biogeographers. Despite its popularity, there are few existing molecular markers to investigate genetic diversity in this large genus, which includes over 160 species. There are also few polymorphic molecular tools that can delineate closely related species within the genus. Viburnum farreri, a member of the Solenotinus subclade and one of the centers of diversity for Viburnum, was selected for DNA sequencing and development of genomic simple sequence repeats (gSSRs). In this study, 15 polymorphic gSSRs were developed and characterized for a collection of 19 V. farreri samples. Number of alleles per locus ranged from two- to- eight and nine loci had four or more alleles. Observed heterozygosity ranged from 0 to 0.84 and expected heterozygosity ranged from 0.10 to 0.80 for the 15 loci. Shannon diversity index values across these loci ranged from 0.21 to 1.62. The markers developed in this study add to the existing molecular toolkit for the genus and will be used in future studies investigating cross-transferability, genetic variation, and species and cultivar delimitation in the Viburnum genus and closely allied genera in the Adoxaceae and Caprifoliaceae.

19.
Plant Dis ; 105(10): 3171-3180, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33591833

RESUMEN

Thousand cankers disease (TCD) is caused by the fungal pathogen Geosmithia morbida and vectored by the walnut twig beetle Pityophthorus juglandis. In infected walnut and butternut (Juglans spp.) hosts and wingnut species (Pterocarya spp.) hosts, tree decline and death results in ecological disruption and economic losses. A rapid molecular detection protocol for TCD using microsatellite markers can confirm the presence of insect vector or fungal pathogen DNA, but it requires specialized expensive equipment and technical expertise. Using four different experimental approaches, capillary and conventional gel electrophoresis, and traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), we describe simplified and inexpensive processes for diagnostic confirmation of TCD. The improved and rapid detection protocols reported in this study reduce time and equipment costs associated with detection of molecular pest and pathogen DNA by (1) using conventional gel electrophoresis or TaqMan molecular probes to elucidate the detection limits for G. morbida and P. juglandis DNA and (2) identifying resources that allow visualization of positive test results for infected host plant tissue samples. Conventional gel electrophoresis and TaqMan molecular probe protocols detected presence of DNA from TCD-associated fungal and insect samples. These procedural improvements can be readily adopted by diagnostic end-users and adapted for use with other complex disease systems to enable rapid pest and pathogen detection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Escarabajos , Juglans , Gorgojos , Animales , Electroforesis , Enfermedades de las Plantas
20.
PLoS One ; 15(12): e0241391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33370297

RESUMEN

Pityopsis includes several regionally and one federally endangered species of herbaceous perennials. Four species are highly localized, including the federally endangered P. ruthii. The genus includes several ploidy levels and interesting ecological traits such as drought tolerance and fire-dependent flowering. Results from previous cladistic analyses of morphology and from initial DNA sequence studies did not agree with one another or with the infrageneric taxonomic classification, with the result that infrageneric relationships remain unresolved. We sequenced, assembled, and compared the chloroplast (cp) genomes of 12 species or varieties of Pityopsis to better understand generic evolution. A reference cp genome 152,569 bp in length was assembled de novo from P. falcata. Reads from other sampled species were then aligned to the P. falcata reference and individual chloroplast genomes were assembled for each, with manual gapfilling and polishing. After removing the duplicated second inverted region, a multiple sequence alignment of the cp genomes was used to construct a maximum likelihood (ML) phylogeny for the twelve cp genomes. Additionally, we constructed a ML phylogeny from the nuclear ribosomal repeat region after mapping reads to the Helianthus annuus region. The chloroplast phylogeny supported two clades. Previously proposed clades and taxonomic sections within the genus were largely unsupported by both nuclear and chloroplast phylogenies. Our results provide tools for exploring hybridity and examining the physiological and genetic basis for drought tolerance and fire-dependent flowering. This study will inform breeding and conservation practices, and general knowledge of evolutionary history, hybridization, and speciation within Pityopsis.


Asunto(s)
Asteraceae/genética , Genoma del Cloroplasto , Asteraceae/clasificación , Mapeo Cromosómico , Anotación de Secuencia Molecular , Filogenia , Sudeste de Estados Unidos , Especificidad de la Especie , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA