Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18197, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875530

RESUMEN

The gut-brain axis involves several bidirectional pathway communications including microbiome, bacterial metabolites, neurotransmitters as well as immune system and is perturbed both in brain and in gastrointestinal disorders. Consistently, microbiota-gut-brain axis has been found altered in autism spectrum disorder (ASD). We reasoned that such alterations occurring in ASD may impact both on methylation signatures of human host fecal DNA (HFD) and possibly on the types of human cells shed in the stools from intestinal tract giving origin to HFD. To test this hypothesis, we have performed whole genome methylation analysis of HFD from an age-restricted cohort of young children with ASD (N = 8) and healthy controls (N = 7). In the same cohort we have previously investigated the fecal microbiota composition and here we refined such analysis and searched for eventual associations with data derived from HFD methylome analysis. Our results showed that specific epigenetic signatures in human fecal DNA, especially at genes related to inflammation, associated with the disease. By applying methylation-based deconvolution algorithm, we found that the HFD derived mainly from immune cells and the relative abundance of those differed between patients and controls. Consistently, most of differentially methylated regions fitted with genes involved in inflammatory response. Interestingly, using Horvath epigenetic clock, we found that ASD affected children showed both epigenetic and microbiota age accelerated. We believe that the present unprecedented approach may be useful for the identification of the ASD associated HFD epigenetic signatures and may be potentially extended to other brain disorders and intestinal inflammatory diseases.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Niño , Preescolar , Trastorno del Espectro Autista/metabolismo , Microbioma Gastrointestinal/genética , Disbiosis/microbiología , Metilación de ADN , Inflamación/genética , Inflamación/complicaciones
2.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758718

RESUMEN

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Asunto(s)
Glioblastoma , Enfermedades del Recién Nacido , Humanos , Animales , Ratones , Recién Nacido , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Apoptosis , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular
3.
Brain Sci ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36831778

RESUMEN

Diagnoses of primary malignant mesenchymal brain tumors are a challenge for pathologists. Here, we report the case of a 52-year-old man with a primary brain tumor, histologically diagnosed as a high-grade glioma, not otherwise specified (NOS). The patient underwent two neurosurgeries in several months, followed by radiotherapy and chemotherapy. We re-examined the tumor samples by methylome profiling. Methylome analysis revealed an epi-signature typical of a primary intracranial sarcoma, DICER1-mutant, an extremely rare tumor. The diagnosis was confirmed by DNA sequencing that revealed a mutation in DICER1 exon 25. DICER1 mutations were not found in the patient's blood cells, thus excluding an inherited DICER1 syndrome. The methylome profile of the DICER1 mutant sarcoma was then compared with that of a high-grade glioma, a morphologically similar tumor type. We found that several relevant regions were differentially methylated. Taken together, we report the morphological, epigenetic, and genetic characterization of the sixth described case of an adult primary intracranial sarcoma, DICER1-mutant to-date. Furthermore, this case report underscores the importance of methylome analysis to refine primary brain tumor diagnosis and to avoid misdiagnosis among morphologically similar subtypes.

4.
Int J Cancer ; 153(3): 476-488, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36479695

RESUMEN

Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Pronóstico , Proteínas Supresoras de Tumor/genética , Metilación de ADN , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilasas de Modificación del ADN/genética , Mutación , Epigénesis Genética , Enzimas Reparadoras del ADN/genética , Biomarcadores de Tumor/genética
5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292965

RESUMEN

Anderson−Fabry disease (FD) is an X-linked disease caused by a functional deficit of the α-galactosidase A enzyme. FD diagnosis relies on the clinical manifestations and research of GLA gene mutations. However, because of the lack of a clear genotype/phenotype correlation, FD diagnosis can be challenging. Recently, several studies have highlighted the importance of investigating DNA methylation patterns for confirming the correct diagnosis of different rare Mendelian diseases, but to date, no such studies have been reported for FD. Thus, in the present investigation, we analyzed for the first time the genome-wide methylation profile of a well-characterized cohort of patients with Fabry disease. We profiled the methylation status of about 850,000 CpG sites in 5 FD patients, all carrying the same mutation in the GLA gene (exon 6 c.901C>G) and presenting comparable low levels of α-Gal A activity. We found that, although the whole methylome profile did not discriminate the FD group from the unaffected one, several genes were significantly differentially methylated in Fabry patients. Thus, we provide here a proof of concept, to be tested in patients with different mutations and in a larger cohort, that the methylation state of specific genes can potentially identify Fabry patients and possibly predict organ involvement and disease evolution.


Asunto(s)
Enfermedad de Fabry , Humanos , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Epigenoma , Fenotipo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...