Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Sustain Chem Eng ; 11(24): 9103-9110, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37351462

RESUMEN

The concept of supramolecular solvents has been recently introduced, and the extended liquid-state window accessible for mixtures of functionalized cyclodextrins (CDs) with hydrogen bond (HB) donor species, e.g., levulinic acid, led to the debut of supramolecular deep eutectic solvents (SUPRA-DES). These solvents retain CD's inclusion ability and complement it with enhanced solvation effectiveness due to an extended HB network. However, so far, these promising features were not rationalized in terms of a microscopic description, thus hindering a more complete capitalization. This is the first joint experimental and computational study on the archetypal SUPRA-DES: heptakis(2,6-di-O-methyl)-ß-CD/levulinic acid (1:27). We used X-ray scattering to probe CD's aggregation level and molecular dynamics simulation to determine the nature of interactions between SUPRA-DES components. We discover that CDs are homogeneously distributed in bulk and that HB interactions, together with the electrostatic ones, play a major role in determining mutual interaction between components. However, dispersive forces act in synergy with HB to accomplish a fundamental task in hindering hydrophobic interactions between neighbor CDs and maintaining the system homogeneity. The mechanism of mutual solvation of CD and levulinic acid is fully described, providing fundamental indications on how to extend the spectrum of SUPRA-DES combinations. Overall, this study provides the key to interpreting structural organization and solvation tunability in SUPRA-DES to extend the range of sustainable applications for these new, unique solvents.

2.
J Phys Chem B ; 126(36): 7006-7014, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36039977

RESUMEN

Protic ionic liquids (PILs) are potential candidates as electrolyte components in energy storage devices. When replacing flammable and volatile organic solvents, PILs are expected to improve the safety and performance of electrochemical devices. Considering their technical application, a challenging task is the understanding of the key factors governing their intermolecular interactions and physicochemical properties. The present work intends to investigate the effects of the structural features on the properties of a promising PIL based on the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBUH+) cation and the (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl)imide (IM14-) anion, the latter being a remarkably large anion with an uneven distribution of the C-F pool between the two sides of the sulfonylimide moieties. For comparison purposes, the experimental investigations were extended to PILs composed of the same DBU-based cation and the trifluoromethanesulfonate (TFO-) or bis(trifluoromethanesulfonyl)imide (TFSI-) anion. The combined use of multiple NMR methods, thermal analyses, density, viscosity, and conductivity measurements provides a deep characterization of the PILs, unveiling peculiar behaviors in DBUH-IM14, which cannot be predicted solely on the basis of differences between aqueous pKa values of the protonated base and the acid (ΔpKa). Interestingly, the thermal and electrochemical properties of DBUH-IM14 turn out to be markedly governed by the size and asymmetric nature of the anion. This observation highlights that the structural features of the precursors are an important tool to tailor the PIL's properties according to the specific application.

3.
Carbohydr Polym ; 291: 119622, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698349

RESUMEN

The comprehension of the mechanism entailing efficient solvation of cyclodextrins (CD) by green solvents is of great relevance to boost environmentally sustainable usages of smart supramolecular systems. Here, 1-ethyl-3-methylimidazolium acetate, an ecofriendly ionic liquid (IL), is considered as an excellent solvent for native CDs. This IL efficiently dissolves up to 40 wt.% ß- and γ-CD already at ambient temperature and X-ray scattering indicates that CDs do not tend to detrimental flocculation under these drastic concentration conditions. Simulation techniques reveal the intimate mechanism of CD solvation by the ionic species: while the strong hydrogen bonding acceptor acetate anion interacts with CD's hydroxyl groups, the imidazolium cation efficiently solvates the hydrophobic CD walls via dispersive interactions, thus hampering CD's hydrophobic driven flocking. Overall the amphiphilic nature of the proposed IL provides an excellent solvation environment for CDs, through the synergic action of its components.


Asunto(s)
Ciclodextrinas , Líquidos Iónicos , Imidazoles/química , Líquidos Iónicos/química , Solubilidad , Solventes/química
4.
J Phys Chem B ; 125(45): 12500-12517, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34738812

RESUMEN

Water-in-salt systems, i.e., super-concentrated aqueous electrolytes, such as lithium bis(trifluoromethanesulfonyl)imide (21 mol/kgwater), have been recently discovered to exhibit unexpectedly large electrochemical windows and high lithium transference numbers, thus paving the way to safe and sustainable charge storage devices. The peculiar transport features in these electrolytes are influenced by their intrinsically nanoseparated morphology, stemming from the anion hydrophobic nature and manifesting as nanosegregation between anions and water domains. The underlying mechanism behind this structure-dynamics correlation is, however, still a matter of strong debate. Here, we enhance the apolar nature of the anions, exploring the properties of the aqueous electrolytes of lithium salts with a strongly asymmetric anion, namely, (trifluoromethylsulfonyl)(nonafluorobutylsulfonyl) imide. Using a synergy of experimental and computational tools, we detect a remarkable level of structural heterogeneity at a mesoscopic level between anion-rich and water-rich domains. Such a ubiquitous sponge-like, bicontinuous morphology develops across the whole concentration range, evolving from large fluorinated globules at high dilution to a percolating fluorous matrix intercalated by water nanowires at super-concentrated regimes. Even at extremely concentrated conditions, a large population of fully hydrated lithium ions, with no anion coordination, is detected. One can then derive that the concomitant coexistence of (i) a mesoscopically segregated structure and (ii) fully hydrated lithium clusters disentangled from anion coordination enables the peculiar lithium diffusion features that characterize water-in-salt systems.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Aniones , Electrólitos , Litio
5.
J Chem Phys ; 154(24): 244501, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34241369

RESUMEN

We report on the thermodynamic, structural, and dynamic properties of a recently proposed deep eutectic solvent, formed by choline acetate (ChAc) and urea (U) at the stoichiometric ratio 1:2, hereinafter indicated as ChAc:U. Although the crystalline phase melts at 36-38 °C depending on the heating rate, ChAc:U can be easily supercooled at sub-ambient conditions, thus maintaining at the liquid state, with a glass-liquid transition at about -50 °C. Synchrotron high energy x-ray scattering experiments provide the experimental data for supporting a reverse Monte Carlo analysis to extract structural information at the atomistic level. This exploration of the liquid structure of ChAc:U reveals the major role played by hydrogen bonding in determining interspecies correlations: both acetate and urea are strong hydrogen bond acceptor sites, while both choline hydroxyl and urea act as HB donors. All ChAc:U moieties are involved in mutual interactions, with acetate and urea strongly interacting through hydrogen bonding, while choline being mostly involved in van der Waals mediated interactions. Such a structural situation is mirrored by the dynamic evidences obtained by means of 1H nuclear magnetic resonance techniques, which show how urea and acetate species experience higher translational activation energy than choline, fingerprinting their stronger commitments into the extended hydrogen bonding network established in ChAc:U.

6.
J Phys Chem B ; 124(13): 2652-2660, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097007

RESUMEN

The inherently amphiphilic nature of native cyclodextrins (CDs) determines their peculiar molecular encapsulation features, enabling applications such as targeted drug nanodelivery, aroma protection, etc. On the contrary, it may also lead to poor solubility in water and other organic solvents and to potentially detrimental flocking in these media, thus posing limitations to more extensive usage. Here we use small angle X-ray scattering to show that deep eutectic solvent reline (1:2 choline chloride:urea) succeeds in dissolving large amounts of ß-CD (at least 800 mg/mL, compared with the solubility in water of 18 mg/mL), without aggregation phenomena occurring. At the microscopic level, molecular dynamics simulations highlight the complex interplay of hydrogen bonding-mediated hydrophilic interactions and hydrophobic force mitigation occurring between ß-CD and reline components, leading to energetically favorable ß-CD solvation. The possibility of achieving very high concentration conditions for unaggregated ß-CD in an environmentally responsible media, such as reline, can open the way to new, so far unpredictable applications, addressing multiple societal challenges.

7.
Phys Chem Chem Phys ; 21(45): 25369-25378, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31709430

RESUMEN

Protic ionic liquids (PIL) were prepared from a super-strong base 1,7-diazabicyclo[5.4.0]undec-7-ene (DBU) and super-strong acids, trifluoromethane sulfonic acid (TfOH), and (trifluoromethanesulfonyl)-(nonafluorobutylsulfonyl)imide, (IM14H), ([DBUH][TfO] and [DBUH][IM14], respectively; the latter for the first time) and their chemical and physical properties and structural features have been explored using a synergy of experimental and computational tools. The short range order in neat DBU, as well as the long range structural correlations induced by charge correlation and hydrogen bonding interactions in the ionic liquids, have been explored under ambient conditions, where these compounds are proposed for a variety of applications. Similar to other [DBUH]-based PILs, the probed ones behave as good ionic liquids. Molecular dynamics-rationalised X-ray diffraction patterns show the major role played by hydrogen bonding in affecting morphology in these systems. Additionally, we find further evidence for the existence of fluorous domains in [DBUH][IM14], thus potentially extending the range of applications for these PILs.

8.
Front Chem ; 7: 285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31119123

RESUMEN

Here we report a thorough investigation of the microscopic and mesoscopic structural organization in a series of triphilic fluorinated room temperature ionic liquids, namely [1-alkyl,3-methylimidazolium][(trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide], with alkyl = ethyl, butyl, octyl ([Cnmim][IM14], n = 2, 4, 8), based on the synergic exploitation of X-ray and Neutron Scattering and Molecular Dynamics simulations. This study reveals the strong complementarity between X-ray/neutron scattering in detecting the complex segregated morphology in these systems at mesoscopic spatial scales. The use of MD simulations delivering a very good agreement with experimental data allows us to gain a robust understanding of the segregated morphology. The structural scenario is completed with determination of dynamic properties accessing the diffusive behavior and a relaxation map is provided for [C2mim][IM14] and [C8mim][IM14], highlighting their natures as fragile glass formers.

9.
J Chem Phys ; 148(21): 211102, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29884045

RESUMEN

One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.

10.
Phys Chem Chem Phys ; 20(13): 8724-8736, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29536993

RESUMEN

This paper extends the study of the induced temperature change in the mesostructure and in the physical properties occurring in aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl-sulfate [EMIm][OSO4]. For some compositions, these mixtures undergo a phase transition between the liquid (isotropic in the mesoscale) and the mesomorphic state (lyotropic liquid crystalline) at about room temperature. The behavior of mixtures doped with a divalent metal sulfate was investigated in order to observe their applicability as electrolytes. Calcium sulfate salt is almost insoluble even in the 20 wt% water mixture. The magnesium salt, in contrast, can be dissolved up to concentrations of 730 ppm in the same mixture and it has a profound impact on its properties. Six aqueous mixtures (with water content from 10 wt% to 33 wt%) of [EMIm][OSO4] were saturated with magnesium sulfate salt, producing the ternary mixture [EMIm][OSO4] + H2O + MgSO4. Viscosity, density and ionic conductivity for these samples were measured from 10 °C to 90 °C. In addition, SAXS, FTIR, diffussion NMR and Raman spectroscopy of the most interesting samples have been performed, and structural data indicate a transition between a hexagonal lyotropic liquid crystalline phase below and an isotropic solution phase above room temperature. The octyl sulfate anions of the cylindrical micelles in the hexagonal phase are coordinated with water molecules through H-bonds (about four per sulfate anion), while the [EMIm] cations seem to be poorly coordinated and so free to move. Inorganic salt addition reinforces that network, increasing the phase transition temperature.

11.
ACS Nano ; 11(11): 10774-10784, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-28846386

RESUMEN

Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. "Water-rich" nanodomains embedded into a "water-depleted" matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the "water-rich" nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering.

12.
Top Curr Chem (Cham) ; 375(3): 58, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28516337

RESUMEN

We discuss some published results and provide new observations concerning the high level of structural complexity that lies behind the nanoscale correlations in ionic liquids (ILs) and their mixtures with molecular liquids. It turns out that this organization is a consequence of the hierarchical construction on both spatial (from ångström to several nanometer) and temporal (from fraction of picosecond to hundreds of nanosecond) scales, which requires joint use of experimental and computational tools.


Asunto(s)
Líquidos Iónicos/química , Simulación de Dinámica Molecular
13.
J Phys Chem Lett ; 8(6): 1197-1204, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28234000

RESUMEN

Ionic liquids (ILs) represent a blooming class of continuously developing advanced materials, with the aiming of a green chemical industry. Their appealing physical and chemical properties are largely influenced by their micro- and mesoscopic structure that is known to possess a high degree of hierarchical organization. High-impact application fields are largely affected by the complex morphology of neat ionic liquids and their mixtures. This Perspective highlights new arising research directions that point to an enhanced level of structural complexity in several IL-based systems, including mixtures. The latter represent a change in paradigm in the approach to formulate new, task-specific IL-based media, and the reported phenomenology has the potential to further expand their range of applications by calling for a revisitation of the nature of interactions in these exciting media.

14.
Phys Chem Chem Phys ; 18(23): 15980-7, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27241730

RESUMEN

We present experimental (X-ray diffraction) data on the structure of liquid dibutyl sulfoxide at 320 K and rationalise the data by means of molecular dynamics simulations. Not unexpectedly, DBSO bearing a strong dipolar moiety and two medium length, apolar butyl chains, this compound was characterised by a distinct degree of polar vs. apolar structural differentiation at the nm spatial scale, which was fingerprinted by a low Q peak in its X-ray diffraction pattern. Similar to, but to a larger extent than its shorter chain family members (such as DMSO), DBSO was also characterised by an enhanced dipole-dipole correlation, which was responsible for a moderate Kirkwood correlation factor as well as for the self-association detected in this compound. We show, however, that the supposedly relevant hydrogen bonding correlations between oxygen and the butyl chain hydrogens are of a limited extent only, and only in the case of α-hydrogens is an appreciable indication of the existence of such an interaction found, albeit this turned out to be a mere consequence of the strong dipole-dipole correlation.

15.
J Phys Chem B ; 120(9): 2638-43, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26895177

RESUMEN

The mesoscopic morphology of mixtures of ethylammonium nitrate, a protic ionic liquid, and n-pentanol is explored for the first time using small angle X-ray scattering as a function of concentration and temperature. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network; however, though macroscopically homogeneous, their mixtures are highly heterogeneous at the mesoscopic spatial scales. Previous structural studies rationalized similar features in related mixtures proposing the existence of large aggregates or micelle- and/or microemulsion-like structures. Here we show that a detailed analysis of the present concentration and temperature resolved experimental data set supports a structural scenario where the mesoscopic heterogeneities are the due to density fluctuations that are precursors of liquid-liquid phase separation. Accordingly no existence of structurally organized aggregates (such as micellar or microemulsion aggregates) is required to account for the mesoscopic heterogeneities detected in this class of binary mixtures.

16.
Phys Chem Chem Phys ; 17(44): 29496-500, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26498176

RESUMEN

Among the most spectacular peculiarities of room temperature ionic liquids, their mesoscopically segregated structural organization keeps on attracting attention, due to its major consequences for the bulk macroscopic properties. Herein we use molecular dynamics simulations to explore the nm-scale architecture in 1-octyl-3-methylimidazolium tetrafluoroborate, as a function of pressure. This study reveals an intriguing new feature: the mesoscopic segregation in ionic liquids is characterized by a high level of pressure-responsiveness, which progressively vanishes upon application of high enough pressure. These results are in agreement with recent X-ray scattering data and are interpreted in terms of the microscopic organization. This new feature might lead to new methods of developing designer solvents for enhanced solvation capabilities and selectivity.

17.
Chemphyschem ; 16(15): 3325-33, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26305804

RESUMEN

We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains-polar and nonpolar-three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment.

18.
J Phys Chem B ; 118(3): 761-70, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24405468

RESUMEN

The structure of solutions of lithium nitrate in a protic ionic liquid with a common anion, ethylammonium nitrate, at room temperature is investigated by means of molecular dynamics simulations. Several structural properties, such as density, radial distribution functions, hydrogen bonds, spatial distribution functions, and coordination numbers, are analyzed in order to get a picture of the solvation of lithium cations in this hydrogen-bonded, amphiphilically nanostructured environment. The results reveal that the ionic liquid mainly retains its structure upon salt addition, the interaction between the ammonium group of the cation and the nitrate anion being only slightly perturbed by the addition of the salt. Lithium cations are solvated by embedding them in the polar nanodomains of the solution formed by the anions, where they coordinate with the latter in a solid-like fashion reminiscent of a pseudolattice structure. Furthermore, it is shown that the average coordination number of [Li](+) with the anions is 4, nitrate coordinating [Li](+) in both monodentate and bidentate ways, and that in the second coordination layer both ethylammonium cations and other lithiums are also found. Additionally, the rattling motion of lithium ions inside the cages formed by their neighboring anions, indicative of the so-called caging effect, is confirmed by the analysis of the [Li](+) velocity autocorrelation functions. The overall picture indicates that the solvation of [Li](+) cations in this amphiphilically nanostructured environment takes place by means of a sort of inhomogeneous nanostructural solvation, which we could refer to as nanostructured solvation, and which could be a universal solvation mechanism in ionic liquids.

19.
J Phys Chem Lett ; 5(10): 1738-42, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26270376

RESUMEN

The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

20.
Phys Chem Chem Phys ; 15(38): 16256-62, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23999599

RESUMEN

The present study analyses the large structural differences, first observed using X-ray diffraction, between 1-alkyl-3-methylimidazolium-based ionic liquids, [Cnmim][Ntf2] (n = 3, 6, 9), and their counterparts with ether-substituted alkyl side chains, [(C1OC1)(n/3)mim][Ntf2] (n = 3, 6, 9). The MD simulations-obtained using a non-polarizable atomistic force-field to model the ionic liquids under discussion-demonstrate that the suppression of the nanostructured nature in the ionic liquids with ether chains is persistent along the entire series and it is not due to any modification of the polar network of the ionic liquid but rather due to the different morphologies of the non-polar regions that surround it. The modification of the non-polar regions-shift from bulky segregated domains in [Cnmim][Ntf2] to thin enveloping ones in [(C1OC1)(n/3)mim][Ntf2]-are caused by the inability of the oxygen-substituted alkyl side chains to pack effectively side by side, the existence of kinks along the chain that lead eventually to intra-molecular, scorpion-like interactions between the chains and the imidazolium ring, and by their stronger interactions with the cations of the polar network via the lone electron pairs of the ether oxygen atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...