Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(10): 110099, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879282

RESUMEN

Pregnancy reprograms mammary epithelial cells (MECs) to control their responses to pregnancy hormone re-exposure and carcinoma progression. However, the influence of pregnancy on the mammary microenvironment is less clear. Here, we used single-cell RNA sequencing to profile the composition of epithelial and non-epithelial cells in mammary tissue from nulliparous and parous female mice. Our analysis indicates an expansion of γδ natural killer T-like immune cells (NKTs) following pregnancy and upregulation of immune signaling molecules in post-pregnancy MECs. We show that expansion of NKTs following pregnancy is due to elevated expression of the antigen-presenting molecule CD1d on MECs. Loss of CD1d expression on post-pregnancy MECs, or overall lack of activated NKTs, results in mammary oncogenesis. Collectively, our findings illustrate how pregnancy-induced changes modulate the communication between MECs and the immune microenvironment and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/inmunología , Células Epiteliales/inmunología , Activación de Linfocitos , Glándulas Mamarias Animales/inmunología , Neoplasias Mamarias Experimentales/inmunología , Células T Asesinas Naturales/inmunología , Paridad , Animales , Antígenos CD1d/metabolismo , Comunicación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Genes myc , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Células T Asesinas Naturales/metabolismo , Embarazo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Transducción de Señal , Microambiente Tumoral
2.
Oncogene ; 40(25): 4384-4397, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34103681

RESUMEN

Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas Co-Represoras/genética , Resistencia a Antineoplásicos/genética , Coactivador 3 de Receptor Nuclear/genética , Fosfofructoquinasa-2/genética , Receptores de Estrógenos/genética , Factores de Transcripción/genética , Animales , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Estrógenos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Paclitaxel/farmacología , Fosforilación/genética , Tamoxifeno/farmacología , Regulación hacia Arriba/genética
3.
J Mammary Gland Biol Neoplasia ; 26(1): 43-66, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33988830

RESUMEN

The developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.


Asunto(s)
Células Epiteliales/fisiología , Perfilación de la Expresión Génica/métodos , Glándulas Mamarias Animales/fisiología , Glándulas Mamarias Humanas/fisiología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Linaje de la Célula/fisiología , Células Epiteliales/citología , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
4.
J Mammary Gland Biol Neoplasia ; 25(4): 351-366, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131024

RESUMEN

The use of mouse derived mammary organoids can provide a unique strategy to study mammary gland development across a normal life cycle, as well as offering insights into how malignancies form and progress. Substantial cellular and epigenomic changes are triggered in response to pregnancy hormones, a reaction that engages molecular and cellular changes that transform the mammary epithelial cells into "milk producing machines". Such epigenomic alterations remain stable in post-involution mammary epithelial cells and control the reactivation of gene transcription in response to re-exposure to pregnancy hormones. Thus, a system that tightly controls exposure to pregnancy hormones, epigenomic alterations, and activation of transcription will allow for a better understanding of such molecular switches. Here, we describe the characterization of ex vivo cultures to mimic the response of mammary organoid cultures to pregnancy hormones and to understand gene regulation and epigenomic reprogramming on consecutive hormone exposure. Our findings suggest that this system yields similar epigenetic modifications to those reported in vivo, thus representing a suitable model to closely track epigenomic rearrangement and define unknown players of pregnancy-induced development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Estradiol/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Progesterona/metabolismo , Prolactina/metabolismo , Animales , Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Células Epiteliales/fisiología , Femenino , Código de Histonas , Histonas/genética , Lactancia/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Modelos Animales , Organoides , Embarazo
5.
Nat Commun ; 11(1): 2649, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461571

RESUMEN

Pregnancy causes a series of cellular and molecular changes in mammary epithelial cells (MECs) of female adults. In addition, pregnancy can also modify the predisposition of rodent and human MECs to initiate oncogenesis. Here, we investigate how pregnancy reprograms enhancer chromatin in the mammary epithelium of mice and influences the transcriptional output of the oncogenic transcription factor cMYC. We find that pregnancy induces an expansion of the active cis-regulatory landscape of MECs, which influences the activation of pregnancy-related programs during re-exposure to pregnancy hormones in vivo and in vitro. Using inducible cMYC overexpression, we demonstrate that post-pregnancy MECs are resistant to the downstream molecular programs induced by cMYC, a response that blunts carcinoma initiation, but does not perturb the normal pregnancy-induced epigenomic landscape. cMYC overexpression drives post-pregnancy MECs into a senescence-like state, and perturbations of this state increase malignant phenotypic changes. Taken together, our findings provide further insight into the cell-autonomous signals in post-pregnancy MECs that underpin the regulation of gene expression, cellular activation, and resistance to malignant development.


Asunto(s)
Glándulas Mamarias Animales/metabolismo , Animales , Carcinogénesis/genética , Transformación Celular Neoplásica/patología , Epigénesis Genética , Epigenoma , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Glándulas Mamarias Animales/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Oncogenes/genética , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA