Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370615

RESUMEN

Facultative heterochromatinization of genomic regulators by Polycomb repressive complex (PRC) 1 and 2 is essential in development and differentiation; however, the underlying molecular mechanisms remain obscure. Using genetic engineering, molecular approaches, and live-cell single-molecule imaging, we quantify the number of proteins within condensates formed through liquid-liquid phase separation (LLPS) and find that in mouse embryonic stem cells (mESCs), approximately 3 CBX2 proteins nucleate many PRC1 and PRC2 subunits to form one non-stoichiometric condensate. We demonstrate that sparse CBX2 prevents Polycomb proteins from migrating to constitutive heterochromatin, demarcates the spatial boundaries of facultative heterochromatin, controls the deposition of H3K27me3, regulates transcription, and impacts cellular differentiation. Furthermore, we show that LLPS of CBX2 is required for the demarcation and deposition of H3K27me3 and is essential for cellular differentiation. Our findings uncover new functional roles of LLPS in the formation of facultative heterochromatin and unravel a new mechanism by which low-abundant proteins nucleate many other proteins to form compartments that enable them to execute their functions.

2.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106207

RESUMEN

Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells, however, the underlying mechanism for this observation has been unknown. Because H3K27me3 levels are diluted two-fold in every round of replication and then restored through the rest of the cycle, we reasoned that the cell cycle length could determine the time available for setting total H3K27me3 levels. Here, we demonstrate that a fast cell cycle sets low levels of H3K27me3 in serum-grown murine embryonic stem cells (mESCs). Extending the G1 phase leads to an increase in global H3K27me3 in mESCs due to the formation of de novo Polycomb domains, and the length of the G1/S block correlates with the extent of gain in H3K27me3, arguing that levels of the modification depend on the time available between successive rounds of replication. Similarly, accelerating the cell cycle in HEK293 cells decreases H3K27me3 levels. Finally, we applied this principle in tumor cells that, due to the dominant negative effect of the sub-stoichiometric H3K27M mutant, have reduced H3K27me3. Here, extending G1 using Palbociclib increased H3K27me3 levels, pointing to an unexpected means to rescue the effect of oncohistones. Our results suggest cell cycle length as a universal mechanism to modulate heterochromatin formation and, thus, cellular identity.

3.
J Am Chem Soc ; 141(42): 16790-16801, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31568727

RESUMEN

Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a ß-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a ß-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.


Asunto(s)
Alanina/análogos & derivados , Biocatálisis , Metiltransferasas/metabolismo , Péptidos/química , Sulfuros/química , Alanina/química , Secuencia de Aminoácidos , Imidas/química , Metiltransferasas/química , Modelos Moleculares , Conformación Proteica , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...