RESUMEN
Pharmacological screening heavily relies on the reliability of compound libraries. To ensure the accuracy of screening results, fast and reliable quality control (QC) of these libraries is essential. While liquid chromatography (LC) with ultraviolet (UV) or mass spectrometry (MS) detection has been employed for molecule QC on small sample sets, the analytical throughput becomes a bottleneck when dealing with large libraries. Acoustic ejection mass spectrometry (AEMS) is a high-throughput analytical platform that covers a broad range of chemical structural space. In this study, we present the utilization of an AEMS system equipped with a high-resolution MS analyzer for high-throughput compound QC. To facilitate efficient data processing, which is a key challenge for such a high-throughput application, we introduce an automatic data processing toolkit that allows for the high-throughput assessment of the sample standards' quantitative and qualitative characteristics, including purity calculation with the background processing option. Moreover, the toolkit includes a module for quantitatively comparing spectral similarity with the reference library. Integrating the described high-resolution AEMS system with the data processing toolkit effectively eliminates the analytical bottleneck, enabling a rapid and reliable compound quality assessment of large-scale compound libraries.
RESUMEN
Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450 , Hepatocitos , Inhibidores Enzimáticos/farmacologíaRESUMEN
We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.
RESUMEN
Stability proteomics techniques that do not require drug modifications have emerged as an attractive alternative to affinity purification methods in drug target engagement studies. Two representative techniques include the chemical-denaturation-based SPROX (Stability of Proteins from Rates of Oxidation), which utilizes peptide-level quantification and thermal-denaturation-based TPP (Thermal Proteome Profiling), which utilizes protein-level quantification. Recently, the "OnePot" strategy was adapted for both SPROX and TPP to increase the throughput. When combined with the 2D setup which measures both the denaturation and the drug dose dimensions, the OnePot 2D format offers improved analysis specificity with higher resource efficiency. However, a systematic evaluation of the OnePot 2D format and a comparison between SPROX and TPP are still lacking. Here, we performed SPROX and TPP to identify protein targets of a well-studied pan-kinase inhibitor staurosporine with K562 lysate, in curve-fitting and OnePot 2D formats. We found that the OnePot 2D format provided â¼10× throughput, achieved â¼1.6× protein coverage and involves more straightforward data analysis. We also compared SPROX with the current "gold-standard" stability proteomics technique TPP in the OnePot 2D format. The protein coverage of TPP is â¼1.5 fold of SPROX; however, SPROX offers protein domain-level information, identifies comparable numbers of kinase hits, has higher signal (R value), and requires â¼3× less MS time. Unique SPROX hits encompass higher-molecular-weight proteins, compared to the unique TPP hits, and include atypical kinases. We also discuss hit stratification and prioritization strategies to promote the efficiency of hit followup.
Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/análisis , Proteoma/análisis , Proteómica/métodos , Estaurosporina/farmacología , Humanos , Células K562 , Proteínas Quinasas/metabolismo , Proteoma/metabolismoRESUMEN
We describe a mass spectrometry (MS) analytical platform resulting from the novel integration of acoustic droplet ejection (ADE) technology, an open-port interface (OPI), and electrospray ionization (ESI)-MS that creates a transformative system enabling high-speed sampling and label-free analysis. The ADE technology delivers nanoliter droplets in a touchless manner with high speed, precision, and accuracy. Subsequent sample dilution within the OPI, in concert with the capabilities of modern ESI-MS, eliminates the laborious sample preparation and method development required in current approaches. This platform is applied to a variety of experiments, including high-throughput (HT) pharmacology screening, label-free in situ enzyme kinetics, in vitro absorption, distribution, metabolism, elimination, pharmacokinetic and biomarker analysis, and HT parallel medicinal chemistry.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , AcústicaRESUMEN
High-throughput experimentation (HTE) has emerged as an important tool in drug discovery, providing a platform for preparing large compound libraries and enabling swift reaction screening over wide-ranging conditions. Recent advances in automated high-density, material-sparing HTE have necessitated the development of rapid analytics with sensitivity and resolution sufficient to identify products and/or assess reaction performance in a timely and data-rich manner. Combination of an ultrathroughput (UT) reader platform with Acoustic Droplet Ejection-Open Port Interface-Mass Spectrometry (ADE-OPI-MS) provides the requisite speed and sensitivity. Herein, we report the application of ADE-OPI-MS to HTE in the areas of parallel medicinal chemistry and reaction screening.
RESUMEN
Understanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species. Two approaches were examined for the scaling of efflux activity to in vivo, namely relative expression as determined by independent proteomics measurements and relative activity as determined via fitting the in vivo neuropharmacokinetic data. The results with both approaches indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.
Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Perros , Células de Riñón Canino Madin Darby , Ratas , Ratas Sprague-DawleyRESUMEN
Aldehyde oxidase 1 (AOX1) is a cytosolic enzyme highly expressed in liver and plays a key role in metabolizing drugs containing aromatic azaheterocyclic substituents. Rapid metabolism catalyzed by AOX1 can cause a drug to exhibit high clearance, low exposure, and hence decreased efficacy or even increased toxicity (if AOX1 generated metabolites are toxic). There is a need to develop the correlation between AOX1 expression levels and AOX1-substrate clearance. A fast, sensitive, and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify AOX1 in human liver cytosol for the first time. This LC-MS/MS method includes a straightforward ultrafiltration fractionation step and gives great selectivity and wide dynamic range (5.2 pM to 20.7 nM). The AOX1 levels in human liver cytosols of 20 donors were quantified using this method to investigate individual differences in AOX1 expression. No significant individual or gender differences in AOX1 levels were observed, although male donors exhibited a broader distribution than female donors (0.74-2.30 pmol/mg versus 0.74-1.69 pmol/mg, respectively). The AOX1 protein levels measured by LC-MS/MS were consistent with those measured by an enzyme-linked immunosorbent assay. Several donors have a normal AOX1 protein level but low enzyme activity, which might be due to cofactor deficiency, single nucleotide polymorphism, or homodimer dissociation. Cytosols from donors with chronic alcohol consumption had low AOX1-catalyzed carbazeran oxidation activities (<51 µl/min per milligram compared with a median of 455 µl/min per milligram), but preserved similar AOX1 protein expression levels (approximately 15% less than the median value).
Asunto(s)
Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Citosol/química , Citosol/metabolismo , Hígado/metabolismo , Adulto , Anciano , Cromatografía Liquida/métodos , Citosol/enzimología , Femenino , Humanos , Hígado/química , Hígado/enzimología , Masculino , Persona de Mediana Edad , Mapeo Peptídico/métodos , Espectrometría de Masas en Tándem/métodos , Adulto JovenRESUMEN
Metabolic stability of drug candidates are often determined in both liver microsome and hepatocyte assays. Comparison of intrinsic clearance values between the two assays provides additional information to guide drug design. Intrinsic clearance values from human liver microsomes and hepatocytes were compared for a set of commercial drugs with known metabolic pathways and transporter characteristics. The results showed that for compounds that were predominately metabolized by CYP mediated mechanisms, the intrinsic clearance values from the two assays were comparable. For compounds with non-CYP pathways, such as UGT and AO, intrinsic clearance was faster in hepatocytes than in microsomes. Substrates of uptake or efflux transporters in this study did not have significant differences of intrinsic clearance between microsomes and hepatocytes, when uptake into the hepatocytes was not the rate-limiting step. When hepatic uptake was rate limiting, intrinsic clearance in microsomes was faster than that in hepatocytes, which was more prevalent for compounds with rapid metabolism. Low passive permeability can limit the exposure to drug molecules to the metabolizing enzymes in the hepatocytes in relationship to the rate of metabolism. The faster the rate of metabolism, the higher permeability is needed for molecule to enter the cells and not becoming rate-limiting. The findings are very useful for drug discovery programs to gain additional insights on mechanistic information to help drug design without added experiments. Follow-up studies can then be designed to address specific questions.
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diseño de Fármacos , Drogas en Investigación/metabolismo , Hepatocitos/enzimología , Microsomas Hepáticos/enzimología , Medicamentos bajo Prescripción/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Células Cultivadas , Descubrimiento de Drogas , Drogas en Investigación/farmacocinética , Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Tasa de Depuración Metabólica , Redes y Vías Metabólicas , Microsomas Hepáticos/efectos de los fármacos , Modelos Biológicos , Medicamentos bajo Prescripción/farmacocinéticaRESUMEN
Permeability is an important property of drug candidates. The Madin-Darby canine kidney cell line (MDCK) permeability assay is widely used and the primary concern of using MDCK cells is the presence of endogenous transporters of nonhuman origin. The canine P-glycoprotein (Pgp) can interfere with permeability and transporter studies, leading to less reliable data. A new cell line, MDCKII-LE (low efflux), has been developed by selecting a subpopulation of low-efflux cells from MDCKII-WT using an iterative fluorescence-activated cell sorting technique with calcein-AM as a Pgp and efflux substrate. MDCKII-LE cells are a subpopulation of MDCKII cells with over 200-fold lower canine Pgp mRNA level and fivefold lower protein level than MDCKII-WT. MDCKII-LE cells showed less functional efflux activity than MDCKII-WT based on efflux ratios. Notably, MDCKII-MDR1 showed about 1.5-fold decreased expression of endogenous canine Pgp, suggesting that using the net flux ratio might not completely cancel out the background endogenous transporter activities. MDCKII-LE cells offer clear advantages over the MDCKII-WT by providing less efflux transporter background signals and minimizing interference from canine Pgp. The MDCKII-LE apparent permeability values well differentiates compounds from high to medium/low human intestinal absorption and can be used for Biopharmaceutical Classification System. The MDCKII-LE permeability assay (4-in-1 cassette dosing) is high throughput with good precision, reproducibility, robustness, and cost-effective.
Asunto(s)
Permeabilidad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Animales , Línea Celular , Separación Celular , Cromatografía Liquida , Perros , Citometría de Flujo , Humanos , Absorción Intestinal , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en TándemRESUMEN
Species independence of brain tissue binding was assessed with a large number of structurally diverse compounds using equilibrium dialysis with brain homogenates of seven species and strains (Wistar Han rat, Sprague-Dawley rat, CD-1 mouse, Hartley guinea pig, beagle dog, cynomolgus monkey, and human). The results showed that the fractions unbound of the seven species and strains were strongly correlated with correlation coefficients ranging from 0.93 to 0.99. The cross-species/strain correlations were not significantly different from the interassay correlation with the same species. The linear correlation between Wistar Han and other species had a slope close to 1 and an intercept near 0. Based on orthogonal statistical analysis, no correction is needed for extrapolation of fraction unbound from Wistar Han rat to the other species or strains. Hence, brain tissue binding of Wistar Han rat can be used to obtain binding of other species and strains in drug discovery.
Asunto(s)
Encéfalo/metabolismo , Animales , Perros , Cobayas , Humanos , Macaca fascicularis , Ratones , Ratas , Especificidad de la EspecieRESUMEN
Oral bioavailability (F) is a product of fraction absorbed (Fa), fraction escaping gut-wall elimination (Fg), and fraction escaping hepatic elimination (Fh). In this study, using a database comprised of Fa, Fg, Fh, and F values for 309 drugs in humans, an analysis of the interrelation of physicochemical properties and the individual parameters was carried out in order to define the physicochemical space for optimum human oral bioavailability. Trend analysis clearly indicated molecular weight (MW), ionization state, lipophilicity, polar descriptors, and free rotatable bonds (RB) influence bioavailability. These trends were due to a combination of effects of the properties on Fa and first-pass elimination (Fg and Fh). Higher MW significantly impacted Fa, while Fg and Fh decreased with increasing lipophilicity. Parabolic trends were observed for bioavailability with polar descriptors. Interestingly, RB has a negative effect on all three parameters, leading to its pronounced effect on bioavailability. In conclusion, physicochemical properties influence bioavailability with typically opposing effects on Fa and first-pass elimination. This analysis may provide a rational judgment on the physicochemical space to optimize oral bioavailability.
Asunto(s)
Absorción Intestinal , Preparaciones Farmacéuticas/metabolismo , Administración Oral , Disponibilidad Biológica , HumanosRESUMEN
As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic.
Asunto(s)
Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacología , Sistema Nervioso Central/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fármacos del Sistema Nervioso Central/metabolismo , Perros , Diseño de Fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Seguridad , SolubilidadRESUMEN
The objective of this work was to further investigate the reasons for disconcordant clinical digoxin drug interactions (DDIs) particularly for false negative where in vitro data suggests no P-glycoprotein (P-gp) related DDI but a clinically relevant DDI is evident. Applying statistical analyses of binary classification and receiver operating characteristic (ROC), revised cutoff values for ratio of [I]/IC(50) < 0.1 and [I(2)]/IC(50) < 5 were identified to minimize the error rate, a reduction of false negative rate to 9% from 36% (based on individual ratios). The steady state total C(max) at highest dose of the inhibitor is defined as [I] and the ratio of the nominal maximal gastrointestinal concentration determined for highest dose per 250 mL volume defined [I(2)](.) We also investigated the reliability of the clinical data to see if recommendations can be made on values that would allow predictions of 25% change in digoxin exposure. The literature derived clinical digoxin interaction studies were statistically powered to detect relevant changes in exposure associated with digitalis toxicities. Our analysis identified that many co-meds administered with digoxin are cardiovascular (CV) agents. Moreover, our investigations also suggest that the presence of CV agents may alter cardiac output and/or kidney function that may act alone or are additional components to enhance digoxin exposure along with P-gp interaction. While we recommend digoxin as the probe substrate to define P-gp inhibitory potency for clinical assessment, we observed high concordance in P-gp inhibitory potency for calcein AM as a probe substrate.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Digoxina/metabolismo , Interacciones Farmacológicas , Preparaciones Farmacéuticas/metabolismo , Ensayos Clínicos como Asunto , Humanos , Concentración 50 InhibidoraRESUMEN
Kidney plays an important role in the elimination of drugs, especially with low or negligible hepatic clearance. An analysis of the interrelation of physicochemical properties and the human renal clearance for a data set of 391 drugs or compounds tested in humans is presented. The data set indicated that lipophilicity shows a negative relationship while polar descriptors show a positive relationship with renal clearance. Analysis of net secreted and net reabsorbed subsets revealed that hydrophilic ionized compounds are probable compounds to show net secretion and a possible drug-drug interaction due to their likely interaction with uptake transporters and inherent low passive reabsorption. The physicochemical space and renal clearance were also statistically analyzed by therapeutic area. In conclusion, ionization state, lipophilicity, and polar descriptors are found to be the physicochemical determinants of renal clearance. These fundamental properties can be valuable in early prediction of human renal clearance and can aid the chemist in structural modifications to optimize drug disposition.
Asunto(s)
Riñón/metabolismo , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Tasa de Depuración Metabólica , Peso MolecularRESUMEN
The utility of the diaminoquinazoline derivative CP-100,356 as an in vivo probe to selectively assess MDR1/BCRP-mediated drug efflux was examined in the rat. CP-100,356 was devoid of inhibition (IC(50) >50 microM) against major human P450 enzymes including P4503A4. In human MDR1-transfected MDCKII cells, CP-100,356 inhibited acetoxymethyl calcein (calcein-AM) uptake (IC(50) approximately 0.5 +/- 0.07 microM) and digoxin transport (IC(50) approximately 1.2 +/- 0.1 microM). Inhibition of prazosin transport (IC(50) approximately 1.5 +/- 0.3 microM) in human BCRP-transfected MDCKII cells by CP-100,356 confirmed the dual MDR1/BCRP inhibitory properties. CP-100,356 was a weak inhibitor of OATP1B1 (IC(50) approximately 66 +/- 1.1 microM) and was devoid of MRP2 inhibition (IC(50) >15 microM). In vivo inhibitory effects of CP-100,356 in rats were examined after coadministration with MDR1 substrate fexofenadine and dual MDR1/BCRP substrate prazosin. Coadministration with increasing doses of CP-100,356 resulted in dramatic increases in systemic exposure of fexofenadine (36- and 80-fold increase in C(max) and AUC at a CP-100,356 dose of 24 mg/kg). Significant differences in prazosin pharmacokinetics were also discernible in CP-100,356-pretreated rats as reflected from a 2.6-fold increase in AUC. Coadministration of CP-100,356 and P4503A substrate midazolam did not result in elevations in systemic exposure of midazolam in the rat. The in vivo methodology should have utility in drug discovery in selective and facile assessment of the role of MDR1 and BCRP efflux transporters in oral absorption of new drug candidates.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Proteínas Portadoras/metabolismo , Absorción Intestinal/efectos de los fármacos , Isoquinolinas/farmacología , Preparaciones Farmacéuticas/metabolismo , Quinazolinas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Antialérgicos/farmacocinética , Área Bajo la Curva , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos del Citocromo P-450 , Inhibidores Enzimáticos/farmacología , Estradiol/farmacocinética , Hipnóticos y Sedantes/farmacocinética , Masculino , Midazolam/farmacocinética , Prazosina/farmacocinética , Ratas , Ratas Sprague-Dawley , Simpaticolíticos/farmacocinética , Terfenadina/análogos & derivados , Terfenadina/farmacocinéticaRESUMEN
The role of breast cancer resistance protein (Bcrp) and the combined activities of Bcrp and P-glycoprotein (P-gp, Mdr1a/1b) in limiting the brain penetration of drugs at the blood-brain barrier (BBB) were investigated using wild-type FVB, Mdr1a/1b(-/-), (-/-), Bcrp(-/-), and Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice. Four drugs, flavopiridol, imatinib mesylate (Gleevec), PF-407288, and prazosin, with different transport specificity for BCRP/Bcrp and MDR1/Mdr1a were selected, and the drug levels in plasma, cerebrospinal fluid, and brain of mice were determined. Flavopiridol and prazosin were identified as substrates for both mouse Bcrp and Mdr1a with greater transport associated with Bcrp. The brain/plasma (B/P) ratios at 0.5 and 2 h in Mdr1a/1b(-/-), (-/-) and Bcrp(-/-) mice were 1- to 2-fold for both compounds, whereas the ratios in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice were more than 5-fold of those observed in FVB mice. For imatinib, a better substrate of P-gp than Bcrp, the B/P ratios in Bcrp(-/-) were comparable to those in FVB mice, whereas the B/P ratios in Mdr1a/1b(-/-), (-/-) and Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice were more than 4- and 28-fold of those in FVB mice at both time points, respectively. Finally, the Bcrp-specific substrate PF-407288 exhibited comparable B/P ratios in Mdr1a/1b(-/-), (-/-) and Bcrp(-/-) mice and slightly but significantly increased B/P ratios in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice compared with those in FVB mice. The B/P ratios of compounds in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice compared with those in Mdr1a/1b(-/-), (-/-) mice clearly demonstrate that Bcrp impairs the brain penetration of its substrates. Moreover, P-gp and Bcrp at BBB function synergistically to limit the brain penetration of shared substrates.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/fisiología , Antagonistas Adrenérgicos alfa/farmacocinética , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Flavonoides/farmacocinética , Oxazoles/farmacocinética , Piperazinas/farmacocinética , Piperidinas/farmacocinética , Prazosina/farmacocinética , Propionatos/farmacocinética , Pirimidinas/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Algoritmos , Animales , Benzamidas , Proteínas Sanguíneas/metabolismo , Encéfalo/efectos de los fármacos , Línea Celular , Cromatografía Líquida de Alta Presión , Perros , Mesilato de Imatinib , Espectrometría de Masas , Ratones , Ratones Noqueados , Unión ProteicaRESUMEN
Estimation of unbound fraction of substrate in microsomal incubation media is important in accurately predicting hepatic intrinsic clearance and drug-drug interactions. In this study, the unbound fraction of 1223 drug-like molecules in human liver microsomal incubation media has been determined using equilibrium dialysis. These compounds, which include 27 marketed drug molecules, cover a much broader range of physiochemical properties such as hydrophobicity, molecular weight, ionization state, and degree of binding than those examined in previous work. In developing the in silico model, we have used two-dimensional molecular descriptors including cLogP, Kier connectivity, shape, and E-state indices, a subset of MOE descriptors, and a set of absorption, disposition, metabolism, and excretion structural keys used for our in-house absorption, disposition, metabolism, excretion, and toxicity modeling. Hydrophobicity is the most important molecular property contributing to the nonspecific binding of substrate to microsomes. The prediction accuracy of the model is validated using a subset of 100 compounds, and 92% of the variance is accounted for by the model with a root mean square error (RMSE) of 0.10. For the training set of compounds, 99% of variance is accounted for by the model with a RMSE of 0.02. The performance of the developed model has been further tested using the 27 marketed drug molecules with a RMSE of 0.10 between the observed and the predicted unbound fraction values.
Asunto(s)
Microsomas Hepáticos/metabolismo , Modelos Teóricos , Cromatografía Liquida , Humanos , Espectrometría de Masas en TándemRESUMEN
Thirty-one structurally diverse marketed central nervous system (CNS)-active drugs, one active metabolite, and seven non-CNS-active compounds were tested in three P-glycoprotein (P-gp) in vitro assays: transwell assays using MDCK, human MDR1-MDCK, and mouse Mdr1a-MDCK cells, ATPase, and calcein AM inhibition. Additionally, the permeability for these compounds was measured in two in vitro models: parallel artificial membrane permeation assay and apical-to-basolateral apparent permeability in MDCK. The exposure of the same set of compounds in brain and plasma was measured in P-gp knockout (KO) and wild-type (WT) mice after subcutaneous administration. One drug and its metabolite, risperidone and 9-hydroxyrisperidone, of the 32 CNS compounds, and 6 of the 7 non-CNS drugs were determined to have positive efflux using ratio of ratios in MDR1-MDCK versus MDCK transwell assays. Data from transwell studies correlated well with the brain-to-plasma area under the curve ratios between P-gp KO and WT mice for the 32 CNS compounds. In addition, 3300 Pfizer compounds were tested in MDR1-MDCK and Mdr1a-MDCK transwell assays, with a good correlation (R(2) = 0.92) between the efflux ratios in human MDR1-MDCK and mouse Mdr1a-MDCK cells. Permeability data showed that the majority of the 32 CNS compounds have moderate to high passive permeability. This work has demonstrated that in vitro transporter assays help in understanding the role of P-gp-mediated efflux activity in determining the disposition of CNS drugs in vivo, and the transwell assay is a valuable in vitro assay to evaluate human P-gp interaction with compounds for assessing brain penetration of new chemical entities to treat CNS disorders.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Fármacos del Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Ratones , Permeabilidad , Preparaciones Farmacéuticas/metabolismo , Fosfatidilcolinas/metabolismoRESUMEN
Novel fluorescent derivatives of dofetilide (1) have been synthesized. Analogues that feature a fluorescent probe attached through an aliphatic spacer to the central tertiary nitrogen of 1 have high affinity for the hERG channel, and affinity is dependent on both linker length and pendent dye. These variables have been optimized to generate Cy3B derivative 10e, which has hERG channel affinity equivalent to that of dofetilide. When bound to cell membranes expressing the hERG channel, 10e shows a robust increase in fluorescence polarization (FP) signal. In a FP binding assay using 10e as tracer ligand, Ki values for several known hERG channel blockers were measured and excellent agreement with the literature Ki values was observed over an affinity range of 2 nM to 3 muM. 10e blocks hERG channel current in electrophysiological patch clamp experiments, and computational docking experiments predict that the dofetilide core of 10e binds hERG channel in a conformation similar to that previously predicted for 1. These analogues enable high-throughput hERG channel binding assays that are rapid, economical, and predictive of test compounds' potential for prolonged QT liabilities.