RESUMEN
Plateau potentials are a critical feature of neuronal excitability, but their all-or-none behavior is not easily captured in modeling. In this study, we investigated models of plateau potentials in multi-compartment neuron models and found that including glutamate spillover provides robust all-or-none behavior. This result arises due to the prolonged duration of extrasynaptic glutamate. When glutamate spillover is not included, the all-or-none behavior is very sensitive to the steepness of the Mg2+ block. These results suggest a potentially significant role of glutamate spillover in plateau potential generation, providing a mechanism for robust all-or-none behavior across a wide range of slopes of the Mg2+ block curve. We also illustrate the importance of the all-or-none plateau potential behavior for nonlinear computation with regard to the nonlinear feature binding problem.
RESUMEN
Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale of biochemical pathways, which is one of the main objects of study in systems biology. While systems biology is among the more standardized fields, conversion between different model formats and interoperability between various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical pathway models, using pre-existing tools that could be utilized for the storage and refinement of models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a single file and provides a human readable set of syntax rules. Next, we implemented custom-made MATLAB® scripts to perform parameter estimation and global sensitivity analysis used in model refinement. Additionally, we have developed a web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed single neuron model by running multiscale simulations in NEURON. Using this workflow, we can simulate the same model in three different simulators, with a smooth conversion between the different model formats, enhancing the characterization of different aspects of the model.
Asunto(s)
Neurociencias , Biología de Sistemas , Humanos , Modelos Biológicos , Neuronas/fisiología , Programas Informáticos , Flujo de TrabajoRESUMEN
Long-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time. However, the mechanism for this is currently unclear, and seems to lie in their diverse regulation patterns. Despite attempts to isolate the ternary complex, it is not known if Gαolf and Gαi can bind to AC5 simultaneously, nor what activity the complex would have. Using protein structure-based molecular dynamics simulations, we show that this complex is stable and inactive. These simulations, along with Brownian dynamics simulations to estimate protein association rates constants, constrain a kinetic model that shows that the presence of this ternary inactive complex is crucial for AC5's ability to detect coincident signals, producing a synergistic increase in cAMP. These results reveal some of the prerequisites for corticostriatal synaptic plasticity, and explain recent experimental data on cAMP concentrations following receptor activation. Moreover, they provide insights into the regulatory mechanisms that control signal processing by different AC isoforms.
Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Adenilil Ciclasas/fisiología , Animales , Cuerpo Estriado/fisiología , Perros , Cinética , Simulación de Dinámica Molecular , Plasticidad Neuronal , Neuronas/fisiología , Isoformas de Proteínas/metabolismo , Ratas , Transducción de Señal/fisiologíaRESUMEN
Many contagions spread over various types of communication networks and their spreading dynamics have been extensively studied in the literature. Here we propose a general model for the concurrent spread of an arbitrary number of contagions in complex networks. The model is stochastic and runs in discrete time, and includes two widely used mechanisms by which a node can change its state. The first, termed the spontaneous state change mechanism, describes spontaneous transition to another state, while the second, termed the contact-induced state change mechanism, describes acquiring other contagions due to contact with the neighbors. We consider reactive discrete-time spreading processes of multiple concurrent contagions where time steps are of finite size without neglecting the possibility of multiple infecting events in a single time step. An essential element for making the model numerically tractable is the use of an approximation for the probability that a node transits to a specific state given any set of neighboring states. Different transmission probabilities may be present between each pair of states. We also derive corresponding continuous-time equations that are simple and intuitive. The model includes many well-known epidemic and rumor spreading models as a special case and it naturally captures spreading processes in multiplex networks.
Asunto(s)
Coinfección/transmisión , Modelos Estadísticos , Coinfección/epidemiología , Humanos , Procesos EstocásticosRESUMEN
An alternate model for rumor spreading over networks is suggested, in which two rumors (termed rumor 1 and rumor 2) with different probabilities of acceptance may propagate among nodes. The propagation is not symmetric in the sense that when deciding which rumor to adopt, nodes always consider rumor 1 first. The model is a natural generalization of the well-known epidemic SIS (susceptible-infective-susceptible) model and reduces to it when some of the parameters of this model are zero. We find that preferred rumor 1 is dominant in the network when the degree of nodes is high enough and/or when the network contains large clustered groups of nodes, expelling rumor 2. However, numerical simulations on synthetic networks show that it is possible for rumor 2 to occupy a nonzero fraction of the nodes in many cases as well. Specifically, in the Watts-Strogatz small-world model a moderate level of clustering supports its adoption, while increasing randomness reduces it. For Erdos-Renyi networks, a low average degree allows the coexistence of the two types of rumors. In Barabasi-Albert networks generated with a low m , where m is the number of links when a new node is added, it is also possible for rumor 2 to spread over the network.