Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 14(1): 239, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834575

RESUMEN

Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrated that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6 J mice were randomly assigned to groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing, respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced all stressed and single housed mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or single housed mice. In sum, although we confirm elevated vHipp protein levels of H1x associate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are associated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.


Asunto(s)
Conducta Animal , Hipocampo , Histonas , Ratones Endogámicos C57BL , Estrés Psicológico , Animales , Masculino , Hipocampo/metabolismo , Ratones , Estrés Psicológico/metabolismo , Histonas/metabolismo , Conducta Animal/fisiología , Adaptación Psicológica/fisiología , Resiliencia Psicológica , Derrota Social , Ansiedad/metabolismo
2.
Transl Psychiatry ; 14(1): 59, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272911

RESUMEN

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.


Asunto(s)
Elementos Transponibles de ADN , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Corteza Prefrontal/metabolismo , Conducta Social , Dedos de Zinc/genética , Roedores/genética , Roedores/metabolismo , Inmunidad
3.
bioRxiv ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986938

RESUMEN

Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrate that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6J mice were randomly assigned to stressed and unstressed groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced experimental mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or unstressed mice. In sum, although we confirm vHipp protein levels of H1x correlate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are correlated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.

4.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066210

RESUMEN

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in the rodent prefrontal cortex was previously determined to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Upon viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, dysregulation of ZFP189-mediated transcription in this brain area, achieved by delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. By performing RNA sequencing in virally manipulated prefrontal cortex tissues, we discover that ZFP189 transcription factors of opposing regulatory function have opposite influence on the expression of genetic transposable elements as well as genes that participate in immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for social behaviors by binding transposable element-rich regions of DNA to regulate immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...