Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(9): 3603-3622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948058

RESUMEN

Background: Myofibroblasts (MYFs) are generally considered the principal culprits in excessive extracellular matrix deposition and scar formation in the pathogenesis of lung fibrosis. Lipofibroblasts (LIFs), on the other hand, are defined by their lipid-storing capacity and are predominantly found in the alveolar regions of the lung. They have been proposed to play a protective role in lung fibrosis. We previously reported that a LIF to MYF reversible differentiation switch occurred during fibrosis formation and resolution. In this study, we tested whether WI-38 cells, a human embryonic lung fibroblast cell line, could be used to study fibroblast differentiation towards the LIF or MYF phenotype and whether this could be relevant for idiopathic pulmonary fibrosis (IPF). Methods: Using WI-38 cells, Fibroblast (FIB) to MYF differentiation was triggered using TGF-ß1 treatment and FIB to LIF differentiation using Metformin treatment. We also analyzed the MYF to LIF and LIF to MYF differentiation by pre-treating the WI-38 cells with TGF-ß1 or Metformin respectively. We used IF, qPCR and bulk RNA-Seq to analyze the phenotypic and transcriptomic changes in the cells. We correlated our in vitro transcriptome data from WI-38 cells (obtained via bulk RNA sequencing) with the transcriptomic signature of LIFs and MYFs derived from the IPF cell atlas as well as with our own single-cell transcriptomic data from IPF patients-derived lung fibroblasts (LF-IPF) cultured in vitro. We also carried out alveolosphere assays to evaluate the ability of the proposed LIF and MYF cells to support the growth of alveolar epithelial type 2 cells. Results: WI-38 cells and LF-IPF display similar phenotypical and gene expression responses to TGF-ß1 and Metformin treatment. Bulk RNA-Seq analysis of WI-38 cells and LF-IPF treated with TGF-ß1, or Metformin indicate similar transcriptomic changes. We also show the partial conservation of the LIF and MYF signature extracted from the Habermann et al. scRNA-seq dataset in WI-38 cells treated with Metformin or TGF-ß1, respectively. Alveolosphere assays indicate that LIFs enhance organoid growth, while MYFs inhibit organoid growth. Finally, we provide evidence supporting the MYF to LIF and LIF to MYF reversible switch using WI-38 cells. Conclusions: WI-38 cells represent a versatile and reliable model to study the intricate dynamics of fibroblast differentiation towards the MYF or LIF phenotype associated with lung fibrosis formation and resolution, providing valuable insights to drive future research.


Asunto(s)
Diferenciación Celular , Fibroblastos , Fibrosis Pulmonar Idiopática , Miofibroblastos , Factor de Crecimiento Transformador beta1 , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Línea Celular , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pulmón/patología , Pulmón/citología , Transcriptoma , Metformina/farmacología , Plasticidad de la Célula/efectos de los fármacos , Fenotipo
2.
Front Bioinform ; 4: 1340339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501112

RESUMEN

Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.

3.
Wiley Interdiscip Rev RNA ; 14(2): e1736, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35491542

RESUMEN

Thousands of unique noncoding RNAs (ncRNAs) are expressed in human cells, some are tissue or cell type specific whereas others are considered as house-keeping molecules. Studies over the last decade have modified our perception of ncRNAs from transcriptional noise to functional regulatory transcripts that influence a variety of molecular processes such as chromatin remodeling, transcription, post-transcriptional modifications, or signal transduction. Consequently, aberrant expression of many ncRNAs plays a causative role in the initiation and progression of various diseases. Since the identification of its developmental role, the long ncRNA DNM3OS (Dynamin 3 Opposite Strand) has attracted attention of researchers in distinct fields including oncology, fibroproliferative diseases, or bone disorders. Mechanistic studies have in particular revealed the multifaceted nature of DNM3OS and its important pathogenic role in several human disorders. In this review, we summarize the current knowledge of DNM3OS functions in diseases, with an emphasis on its potential as a novel therapeutic target. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/metabolismo , Transducción de Señal/genética
4.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333491

RESUMEN

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Pulmón/metabolismo , Células Madre , Epitelio/fisiología , Células Epiteliales/metabolismo
5.
EMBO Mol Med ; 14(3): e15295, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35156321

RESUMEN

Lineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.


Asunto(s)
Indoles/farmacología , Melanoma , MicroARNs , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Mecanotransducción Celular , Melanoma/tratamiento farmacológico , Melanoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Recurrencia Local de Neoplasia
6.
Oncogene ; 40(14): 2621, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686243

RESUMEN

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.

7.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726565

RESUMEN

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Asunto(s)
Bronquios/citología , Bronquios/crecimiento & desarrollo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Epiteliales/citología , Mucosa Nasal/citología , Mucosa Nasal/crecimiento & desarrollo , Células del Estroma/citología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad
8.
Development ; 146(20)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31558434

RESUMEN

The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFß pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/citología , Células Caliciformes/citología , Mucosa Respiratoria/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Humanos , Ratones , RNA-Seq , Mucosa Respiratoria/metabolismo , Porcinos , Tráquea/citología , Tráquea/metabolismo
9.
Oncogene ; 38(46): 7146-7165, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31417181

RESUMEN

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Estrés Oxidativo/fisiología , ARN Largo no Codificante/fisiología , Adenocarcinoma del Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...