Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(7): 8503-8509, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405521

RESUMEN

Natural fiber-welded (NFW) biopolymer composites are rapidly garnering industrial and commercial attention in the textile sector, and a recent disclosure demonstrating the production of mesoporous NFW materials suggests a bright future as sorbents, filters, and nanoparticle scaffolds. A significant roadblock in the mass production of mesoporous NFW composites for research and development is their lengthy preparation time: 24 h of water rinses to remove the ionic liquid (IL) serving as a welding medium and then 72 h of solvent exchanges (polar to nonpolar), followed by oven drying to attain a mesoporous composite. In this work, the rinsing procedure is systematically truncated using the solution conductivity as a yardstick to monitor IL removal. The traditional water immersion rinses are replaced by a flow-through system (i.e., infinite dilution) using a peristaltic pump, reducing the required water rinse time for the maximum removal of IL to 30 min. This procedure also allows for easy in-line monitoring of solution conductivity and reclamation of an expensive welding solvent. Further, the organic solvent exchange is minimized to 10 min per solvent (from 24 h), resulting in a total combined rinse time of 1 h. This process acceleration reduces the overall solvent exposure time from 96 to 1 h, an almost 99% temporal improvement.

2.
ACS Macro Lett ; 12(12): 1654-1658, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38104265

RESUMEN

Seemingly nonporous biopolymer composites prepared by natural fiber welding (NFW) possess latent pores that can be exfoliated by conscientious solvation. We present a seminal demonstration of this concept for cellulose and explore the impact of latent pores on the manufacture and commercialization of NFW products.

3.
Inorg Chem ; 62(44): 18280-18289, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870915

RESUMEN

In this work, a series of novel boronium-bis(trifluoromethylsulfonyl)imide [TFSI-] ionic liquids (IL) are introduced and investigated. The boronium cations were designed with specific structural motifs that delivered improved electrochemical and physical properties, as evaluated through cyclic voltammetry, broadband dielectric spectroscopy, densitometry, thermogravimetric analysis, and differential scanning calorimetry. Boronium cations, which were appended with N-alkylpyrrolidinium substituents, exhibited superior physicochemical properties, including high conductivity, low viscosity, and electrochemical windows surpassing 6 V. Remarkably, the boronium ionic liquid functionalized with both an ethyl-substituted pyrrolidinium and trimethylamine, [(1-e-pyrr)N111BH2][TFSI], exhibited a 6.3 V window, surpassing previously published boronium-, pyrrolidinium-, and imidazolium-based IL electrolytes. Favorable physical properties and straightforward tunability make boronium ionic liquids promising candidates to replace conventional organic electrolytes for electrochemical applications requiring high voltages.

4.
Phys Chem Chem Phys ; 25(8): 6342-6351, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779353

RESUMEN

Ion dynamics and charge transport in 1-methyl-3-octylimidazolium ionic liquids with chloride, bromide, tetrafluoroborate, tricyanomethanide, hexafluorophosphate, triflate, tetrachloroaluminate, bis(trifluoromethylsulfonyl)imide, and heptachlorodialuminate anions are investigated by broadband dielectric spectroscopy, rheology, viscometry, and differential scanning calorimetry. A detailed analysis reveals an anion and temperature-dependent separation of characteristic molecular relaxation rates extracted from various representations of the dielectric spectra. The separation in rates extracted from the electric modulus and conductivity formalisms is interpreted as an experimental signature of significant heterogeneity in the local ion dynamics associated with the structural glass transition, viscosity, and dc ion conductivity. It is further found that the degree of dynamic heterogeneity correlates with the strengths of slow dielectric and mechanical relaxations previously attributed to the dynamics of mesoscale solvophobic aggregates. Increasing local dynamic heterogeneity correlates with an increase in the strength of the slow, aggregate dielectric relaxation and a decrease in the strength of the slow, aggregate mechanical relaxation. Accordingly, increasing local dynamic heterogeneity, brought about by change in temperature and/or cation/anion chemical structure, correlates with an increase in the static dielectric permittivities and a decrease in the contribution of aggregate dynamics to the zero-shear viscosities. The established correlation provides a new ability to distinguish between the influence of mesoscale aggregate shape/morphology versus local and mesoscale ion dynamics on the transport properties of ionic liquids.

5.
Carbohydr Polym ; 282: 119040, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123731

RESUMEN

All-cellulose xerogel composites were fabricated using a facile, scalable three-step process-(1) partial ionic liquid dissolution, (2) non-solvent rinsing, and (3) drying. The xerogel composites are composed of two phases where the yarn center is non-porous highly crystalline cellulose I surrounded by mesoporous amorphous regenerated cellulose. The composite had high 149 m2 g-1 Brunauer-Emmett-Teller (BET) surface area with 11.7 nm average pore diameter. The porosity was calculated using density-based (ϕρ = 0.49) and volume-based (ϕV = 0.52) methods. The porosity evolution mechanism is attributed to non-solvent-induced polarity shifts, and these results are compared with non-porous morphologies produced by varying the choice in non-solvents. Although similar decrystallization behavior was measured for all samples, non-porous yarns had a smaller diameter and significantly reduced BET surface area (0.03 m2 g-1). The presented fabrication method offers controllable mesoporous phase formation along with freestanding structural capability towards the development of advanced functional cellulosic materials.

6.
Sci Technol Adv Mater ; 14(6): 065004, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27877624

RESUMEN

A technique was developed for preparing a novel material that consists of gold nanoparticles trapped within a fiber of unfolded proteins. These fibers are made in an aqueous solution that contains HAuCl4 and the protein, bovine serum albumin (BSA). By changing the ratio of gold to BSA in solution, two different types of outcomes are observed. At lower gold to BSA ratios (30-120), a purple solution results after heating the mixture at 80 °C for 4 h. At higher gold to BSA ratios (130-170), a clear solution containing purple fibers results after heating the mixture at 80 °C for 4 h. UV-Vis spectroscopy and light scattering techniques show growth in nanocolloid size as gold to BSA ratio rises above 100. Data indicate that, for the higher gold to BSA ratios, the gold is sequestered within the solid material. The material mass, visible by eye, appears to be an aggregation of smaller individual fibers. Scanning electron microscopy and transmission electron microscopy indicate that these fibers are primarily one-dimensional aggregates, which can display some branching, and can be as narrow as 400 nm in size. The likely mechanism for the synthesis of the novel material is discussed.

7.
Phys Chem Chem Phys ; 14(46): 16041-6, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23099473

RESUMEN

The crystal structure of the salt ethylammonium nitrate (EtNH(3)NO(3)) has been determined. EtNH(3)NO(3) is one of the most widely studied protic ionic liquids (PILs)-ILs formed by proton transfer from a Brønsted acid to a Brønsted base. The structural features from the crystal structure, in concert with a Raman spectroscopic analysis of the ions, provide direct insight as to why EtNH(3)NO(3) melts below ambient temperature, while other related salts (such as EtNH(3)Cl) do not.

8.
Chem Commun (Camb) ; 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22614442

RESUMEN

Ionic liquid-facilitated mobilization and reorganization of biopolymers in natural fibrous materials is visualized by confocal fluorescent spectromicroscopy. Ionic liquid-based processes controllably fuse adjacent fibres while simultaneously leaving selected amounts of biopolymers in their native states. These processes generate congealed materials with extended intermolecular hydrogen bonding networks and enhanced properties.

9.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 3): o591, 2010 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-21580354

RESUMEN

The title compound, C(7)H(12)N(2)O(3)S, is a zwitterion precursor to a Brønsted acid ionic liquid with potential as an acid catalyst. The C-N-C-C torsion angle of 100.05 (8)° allows the positively charged imidazolium head group and the negatively charged sulfonate group to inter-act with neighboring zwitterions, forming a C-H⋯O hydrogen-bonding network; the shortest among these inter-actions is 2.9512 (9) Å. The C-H⋯O inter-actions can be described by graph-set notation as two R(2) (2)(16) and one R(2) (2)(5) hydrogen-bonded rings.

10.
Langmuir ; 24(9): 5070-8, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18442227

RESUMEN

The use of single wall carbon nanotubes (SWCNTs) in current and future applications depends on the ability to process SWCNTs in a solvent to yield high-quality dispersions characterized by individual SWCNTs and possessing a minimum of SWCNT bundles. Many approaches for the dispersion of SWCNTs have been reported. However, there is no general assessment which compares the relative quality and dispersion efficiency of the respective methods. Herein we report a quantitative comparison of the relative ability of "wrapping polymers" including oligonucleotides, peptides, lignin, chitosan, and cellulose and surfactants such as cholates, ionic liquids, and organosulfates to disperse SWCNTs in water. Optical absorption and fluorescence spectroscopy provide quantitative characterization (amount of SWCNTs that can be suspended by a given surfactant and its ability to debundle SWCNTs) of these suspensions. Sodium deoxy cholate (SDOCO), oligonucleotides (GT)(15), (GT)(10), (AC)(15), (AC)(10), C(10-30), and carboxymethylcellulose (CBMC-250K) exhibited the highest quality suspensions of the various systems studied in this work. The information presented here provides a good framework for further study of SWCNT purification and applications.


Asunto(s)
ADN de Cadena Simple/química , Nanotubos de Carbono/química , Tensoactivos/química , Absorción , Imidazolinas/química , Espectrofotometría Infrarroja
11.
Langmuir ; 23(14): 7707-14, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-17555333

RESUMEN

Recent studies on organically modified clays (OMCs) have reported enhanced thermal stabilities when using imidazolium-based surfactants over the typical ammonium-based surfactants. Other studies have shown that polyhedral oligomeric silsesquioxanes (POSS) also improve the thermal properties of composites containing these macromers. In an attempt to utilize the beneficial properties of both imidazolium surfactants and POSS macromers, a dual nanocomposite approach to prepare OMCs was used. In this study, the preparation of a new POSS-imidazolium surfactant and its use as an organic modifier for montmorillonite are reported. The purity, solubility, and thermal characteristics of the POSS-imidazolium chloride were evaluated. In addition, several OMCs were prepared by exchanging the Na+ with POSS imidazolium cations equivalent to 100%, 95%, 40%, 20%, and 5% of the cation exchange capacity of the clay. The subsequent OMCs were characterized using thermal analysis techniques (DSC, SDT, and TGA) as well as 29Si NMR to determine the POSS content in the clay interlayer both before and after thermal oxidation degradation. Results indicate the following: (1) the solvent choice changes the efficiency of the ion-exchange reaction of the clay; (2) self-assembled crystalline POSS domains are present in the clay interlayer; (3) the d-spacing of the exchanged clay is large (3.6 nm), accommodating a bilayer structure of the POSS-imidazolium; and (4) the prepared POSS-imidazolium exchanged clays exhibit higher thermal stabilities than any previously prepared imidazolium or ammonium exchanged montmorillonite.

12.
Chem Commun (Camb) ; (35): 3708-10, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17047819

RESUMEN

The crystal structures and thermal behavior of the 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexa-fluorophosphate salts are compared with the analogous 1-butyl-2,3-dimethylimidazolium salts to examine the influence of the ether oxygen on salt thermal properties for a typical constituent cation used in the preparation of ionic liquids.

13.
Inorg Chem ; 45(4): 1412-4, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16471945

RESUMEN

A new TFSI- anion disordering mode has been discovered in a supercooled plastic crystalline phase of Et4NTFSI, which may, in part, account for the low melting points of TFSI- salts with organic cations, thereby forming ionic liquids, and the intriguing properties of LiTFSI for lithium battery applications.

14.
J Am Chem Soc ; 126(44): 14350-1, 2004 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-15521743

RESUMEN

In this work, the suitability of imidazolium-based ionic liquid solvents is investigated for the dissolution and regeneration of silkworm (Bombyx mori) silk. Within an ionic liquid the anion plays a larger role in dictating the ultimate solubility of the silk. The dissolution of the silk in the ionic liquid is confirmed using wide-angle X-ray scattering. The dissolved silk is also processed into 100 mum-thick, two-dimensional films, and the structure of these films is examined. The rinse solvent, acetonitrile or methanol, has a profound impact on both the topography of the films and the secondary structure of the silk protein. The image depicts a silkworm cocoon dissolved in 1-butyl-3-methylimidazolium chloride and then regenerated as a film with birefringence.


Asunto(s)
Fibroínas/química , Animales , Bombyx/química , Cristalización , Enlace de Hidrógeno , Iones , Estructura Secundaria de Proteína , Solubilidad
15.
Inorg Chem ; 36(6): 1227-1232, 1997 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-11669690

RESUMEN

Gutmann acceptor numbers have been determined using (31)P nuclear magnetic resonance (NMR) for AlCl(3)/EMIC melts as well as LiCl, NaCl, and KCl neutral buffered melts. In AlCl(3)/EMIC melts, where EMIC is 1-ethyl-3-methylimidazolium chloride, the change in Gutmann acceptor number as a function of the AlCl(3):EMIC melt ratio is attributed to an equilibrium between a monoadduct of triethylphosphine oxide.AlCl(3) and a diadduct of triethylphosphine oxide.2AlCl(3). Observed acceptor numbers for the neutral buffered melts appear linear with respect to the melt's initial mole ratio of AlCl(3):EMIC prior to buffering. The lithium cation appears to be the most Lewis acidic alkali metal cation followed by the sodium and potassium cations. Possible reasons for the change in acceptor number as a function of changing alkali metal cation concentration are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA