Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(2): 370-374, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153245

RESUMEN

BACKGROUND: Islatravir is a new antiretroviral drug that inhibits the reverse transcriptase (RT) of HIV-1 through multiple mechanisms. It is proposed to be used in combination with doravirine, a new NNRTI. M184V/I mutations have been shown to reduce the in vitro antiviral activity of islatravir, but their effect when pre-selected during ART has not been investigated. METHODS: HIV-1 rt sequences were obtained from four individuals of the Garrahan HIV cohort prior to, or during virological failure to ART. HIV-1 infectious molecular clones were constructed on an NL4-3 backbone, and infectious viruses were produced by transfection of 293T cells. Fold-changes in IC50 were calculated for each mutant versus the NL4-3 WT. HIV-1 phenotypic drug resistance was tested in vitro against NRTIs and NNRTIs. RESULTS: In all the cases, M184I/V, either alone or in the presence of other mutations, was associated with reduced susceptibility to islatravir, abacavir and lamivudine. Viruses carrying M184V/I showed variable levels of resistance to islatravir (4.8 to 33.8-fold). The greatest reduction in susceptibility was observed for viruses carrying the mutations M184V + V106I (33.8-fold resistance) or M184V + I142V (25.2-fold resistance). For NNRTIs, the presence of V106I alone did not affect susceptibility to doravirine or etravirine, but showed a modest reduction in susceptibility to efavirenz (6-fold). Susceptibility to doravirine was slightly reduced only for one of the mutants carrying V106I in combination with Y181C and M184V. CONCLUSIONS: Mutations and polymorphisms selected in vivo together with M184V/I depend on the viral genetic context and on ART history, and could affect the efficacy of islatravir once available for use in the clinic.


Asunto(s)
Fármacos Anti-VIH , Desoxiadenosinas , Infecciones por VIH , VIH-1 , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Lamivudine/uso terapéutico , Mutación , Transcriptasa Inversa del VIH/genética , Farmacorresistencia Viral/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico
2.
Front Immunol ; 14: 1167965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781368

RESUMEN

HIV-1 infection of target cells can occur through either cell-free virions or cell-cell transmission in a virological synapse, with the latter mechanism of infection reported to be 100- to 1,000-fold more efficient. Neutralizing antibodies and entry inhibitors effectively block cell-free HIV-1, but with few exceptions, they display much less inhibitory activity against cell-mediated HIV-1 transmission. Previously, we showed that engineering HIV-1 target cells by genetically linking single-chain variable fragments (scFvs) of antibodies to glycosyl phosphatidylinositol (GPI) potently blocks infection by cell-free virions and cell-mediated infection by immature dendritic cell (iDC)-captured HIV-1. Expression of scFvs on CD4+ cell lines by transduction with X5 derived anti-HIV-1 Env antibody linked to a GPI attachment signal directs GPI-anchored scFvs into lipid rafts of the plasma membrane. In this study, we further characterize the effect of GPI-scFv X5 on cell-cell HIV-1 transmission from DCs to target cells. We report that expression of GPI-scFv X5 in transduced CD4+ cell lines and human primary CD4+ T cells potently restricts viral replication in iDC- or mDC-captured HIV-1 in trans. Using live-cell imaging, we observed that when GPI-GFP or GPI-scFv X5 transduced T cells are co-cultured with iDCs, GPI-anchored proteins enrich in contact zones and subsequently migrate from T cells into DCs, suggesting that transferred GPI-scFv X5 interferes with HIV-1 infection of iDCs. We conclude that GPI-scFv X5 on the surface of transduced CD4+ T cells not only potently blocks cell-mediated infection by DCs, but it transfers from transduced cells to the surface of iDCs and neutralizes HIV-1 replication in iDCs. Our findings have important implications for HIV-1 antibody-based immunotherapies as they demonstrate a viral inhibitory effect that extends beyond the transduced CD4+ T cells to iDCs which can enhance HIV-1 replication.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Anticuerpos de Cadena Única , Humanos , Linfocitos T CD4-Positivos , Anticuerpos Anti-VIH , Línea Celular , Anticuerpos de Cadena Única/farmacología
3.
Front Microbiol ; 12: 779460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867922

RESUMEN

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high-peak viremia or setpoint plasma viral loads, as observed during simian immunodeficiency virus (SIV) infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly 4years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame (ORF) in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic [Vpr-HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts] and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20weeks. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolate C/196. The data indicate that the viruses selected during long-term infection acquired HIV-1 Vpr expression, suggesting the importance of Vpr for in vivo pathogenesis. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.

4.
Front Immunol ; 12: 693462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691016

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China, and then rapidly spread causing an unprecedented pandemic. A robust serological assay is needed to evaluate vaccine candidates and better understand the epidemiology of coronavirus disease (COVID-19). Methods: We used the full-length spike (S) protein of SARS-CoV-2 for the development of qualitative and quantitative IgG and IgA anti-S enzyme linked immunosorbent assays (ELISA). A total of 320 sera used for assay development were comprised of pandemic sera from SARS-CoV-2 infected adults (n=51) and pre-pandemic sera (n=269) including sera from endemic human coronavirus infected adults. Reverse cumulative curves and diagnostic test statistics were evaluated to define the optimal serum dilution and OD cutoff value for IgG anti-S and IgA anti-S ELISAs. The IgG and IgA anti-S, and three functional antibodies (ACE-2 receptor blocking antibody, lentipseudovirus-S neutralizing antibody, and SARS-CoV-2 neutralizing antibody) were measured using additional SARS-CoV-2 PCR positive sera (n=76) and surveillance sera (n=25). Lastly, the IgG and IgA anti-S levels were compared in different demographic groups. Results: The optimal serum dilution for the qualitative IgG anti-S ELISA was at 1:1024 yielding a 99.6% specificity, 92.2% sensitivity, 92.9% positive predictive value (PPV), and 99.6% negative predictive value (NPV) at a SARS-CoV-2 seroprevalence of 5%. The optimal serum dilution for the qualitative IgA anti-S ELISA was at 1:128 yielding a 98.9% specificity, 76.5% sensitivity, 78.3% PPV, and 98.8% NPV at the same seroprevalence. Significant correlations were demonstrated between the IgG and IgA (r=0.833 for concentrations, r=0.840 for titers) as well as between IgG and three functional antibodies (r=0.811-0.924 for concentrations, r=0.795-0.917 for titers). The IgG and IgA anti-S levels were significantly higher in males than females (p<0.05), and in adults with moderate/severe symptoms than in adults with mild/moderate symptoms (p<0.001). Conclusion: We developed a highly specific and sensitive IgG anti-S ELISA assay to SARS-CoV-2 using full length S protein. The IgG anti-S antibody level was strongly associated with IgA and functional antibody levels in adults with SARS-CoV-2 infection. Gender and disease severity, rather than age, play an important role in antibody levels.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Adulto , COVID-19/diagnóstico , Prueba Serológica para COVID-19 , Femenino , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA