Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 63: 104924, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31945565

RESUMEN

Gas nuclei in water are usually too small to be directly observed. They will grow into bubbles under the negative pressure, which is called cavitation (heterogeneous cavitation). In this study, the gas nuclei in the hydrophilic and hydrophobic silica particle suspension were investigated using the transient cavitation threshold measured by a high-intensity focused ultrasound (HIFU). The transient cavitation bubbles were also observed by a high-speed camera. The results showed that the nuclei only exist on the surface of hydrophobic particles. Furthermore, the aggregation experiments revealed that the aggregates were only formed in the hydrophobic silica suspension by ultrasonic standing waves (USW) at 200 kHz. This distinct difference was mainly due to the formation of gas nuclei on hydrophobic silica particles, which grew and coalesced into stable bubbles under the 200 kHz USW. The aggregation process in suspension was observed by a CCD camera. Moreover, the cavitation thresholds and acoustic radiation forces were analyzed to explain the mechanism of the acoustic aggregation. This study showed a very promising acoustic method for the selective aggregation of hydrophobic particles, which might be efficiently used in the mineral separation industry.

2.
Ultrason Sonochem ; 60: 104739, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31557697

RESUMEN

Ultrasound technology is widely applied in the flotation process. From the perspective of the theory of ultrasound, this article explains the effects and applications of ultrasound in the flotation process. To obtain a clear understanding of ultrasonic effects, we observe the phenomena of ultrasound using a high-speed camera and a CCD camera, and investigate potential applications in flotation. From these different phenomena, the ultrasonic effects are classified into three types of effect: the transient cavitation effect, stable cavitation effect, and acoustic radiation force effect. Based on these effects, the applications of ultrasound to mineral flotation are reviewed, including slime coating removal, oxidation film removal, desulfuration, tiny bubble generation, flotation reagent dispersion, and aggregation. In addition, the ultrasonic equipment and treatment methods applied in flotation are classified and compared based on their characteristics. Finally, we propose some potential directions in the study of the stable cavitation effect and acoustic radiation force effect, which are important, but are seldom mentioned in previous reports.

3.
J Phys Chem B ; 123(10): 2397-2404, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30767526

RESUMEN

The features of interfacial water at air-water interfaces of anionic sodium dodecyl sulfate (SDS) and cationic dodecyl amine hydrochloride (DDA) solutions were examined by combining sum frequency generation (SFG) vibrational spectroscopy measurements and molecular dynamics simulations (MDS). The SFG spectra revealed that interfacial water molecules for SDS solutions were highly ordered compared with those for DDA solutions. To elucidate this observation, in addition to agreement with the literature in regards to the interfacial electric field at the interfaces, we investigated the features of interfacial water molecules with respect to their network and their interaction with surfactant head groups. Our simulation analysis results revealed a higher number density, more strongly connected hydrogen bonding, and more orderly oriented interfacial water molecules at the interface of the SDS solutions as compared to the DDA solutions. The goal of this research is  to identify significant features of interfacial water for our improved understanding of such interfacial phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...