Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168992

RESUMEN

Adoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400-35,000 features down to 4-34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl .

2.
iScience ; 26(12): 108486, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125025

RESUMEN

Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.

3.
Res Sq ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909508

RESUMEN

High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl.

4.
Semin Immunopathol ; 45(1): 125-143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36786929

RESUMEN

Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Multiómica , Neuroimagen/métodos , Inflamación/terapia
5.
Cell Rep Med ; 3(7): 100680, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35839768

RESUMEN

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.


Asunto(s)
COVID-19 , Humanos , FN-kappa B/metabolismo , Proteómica , SARS-CoV-2 , Transducción de Señal
6.
Int J Surg ; 104: 106706, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697325

RESUMEN

BACKGROUND: Although predictive models have already integrated demographic factors and comorbidities as risk factors for a prolonged hospital stay, factors related to anaesthesia management in ambulatory surgery have not been yet characterized. This study aims to identify anaesthetic factors associated with a prolonged discharge time in ambulatory surgery. METHODS: All clinical records of patients who underwent ambulatory cholecystectomy in a French University Hospital (Hôpital Saint Antoine, Paris) between January 1st, 2012 and December 31st, 2018 were retrospectively reviewed. The primary endpoint was the discharge time, defined as the time between the end of surgery and discharge. A multivariable Cox proportional-hazards model was fitted to investigate the factors associated with a prolonged discharge time. RESULTS: Five hundred and thirty-five (535) patients were included. The median time for discharge was 150 min (interquartile range - IQR [129-192]). A bivariable analysis highlighted a positive correlation between discharge timeline and the doses-weight of ketamine and sufentanil. In the multivariable Cox proportional hazards model analysis, the anaesthesia-related factors independently associated with prolonged discharge time were the dose-weight of ketamine in interaction with the dose weight of sufentanil (HR 0.10 per increment of 0.1 mg/kg of ketamine or 0.2 µg/kg of sufentanil, CI 95% [0.01-0.61], p = 0.013) and the non-use of a non-steroidal anti-inflammatory drug (NSAID) (HR 0.81 [0.67-0.98], p = 0.034). Twenty patients (4%) had unscheduled hospitalization following surgery. CONCLUSION: Anaesthesia management, namely the use of ketamine and the non-use of NSAID, affects time to hospital discharge.


Asunto(s)
Ketamina , Alta del Paciente , Procedimientos Quirúrgicos Ambulatorios , Anestesia General , Antiinflamatorios no Esteroideos , Colecistectomía , Hospitales , Humanos , Estudios Retrospectivos , Factores de Riesgo , Sufentanilo
7.
Front Immunol ; 12: 725989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566984

RESUMEN

Approximately 1 in 4 pregnant women in the United States undergo labor induction. The onset and establishment of labor, particularly induced labor, is a complex and dynamic process influenced by multiple endocrine, inflammatory, and mechanical factors as well as obstetric and pharmacological interventions. The duration from labor induction to the onset of active labor remains unpredictable. Moreover, prolonged labor is associated with severe complications for the mother and her offspring, most importantly chorioamnionitis, uterine atony, and postpartum hemorrhage. While maternal immune system adaptations that are critical for the maintenance of a healthy pregnancy have been previously characterized, the role of the immune system during the establishment of labor is poorly understood. Understanding maternal immune adaptations during labor initiation can have important ramifications for predicting successful labor induction and labor complications in both induced and spontaneous types of labor. The aim of this study was to characterize labor-associated maternal immune system dynamics from labor induction to the start of active labor. Serial blood samples from fifteen participants were collected immediately prior to labor induction (baseline) and during the latent phase until the start of active labor. Using high-dimensional mass cytometry, a total of 1,059 single-cell immune features were extracted from each sample. A multivariate machine-learning method was employed to characterize the dynamic changes of the maternal immune system after labor induction until the establishment of active labor. A cross-validated linear sparse regression model (least absolute shrinkage and selection operator, LASSO) predicted the minutes since induction of labor with high accuracy (R = 0.86, p = 6.7e-15, RMSE = 277 min). Immune features most informative for the model included STAT5 signaling in central memory CD8+ T cells and pro-inflammatory STAT3 signaling responses across multiple adaptive and innate immune cell subsets. Our study reports a peripheral immune signature of labor induction, and provides important insights into biological mechanisms that may ultimately predict labor induction success as well as complications, thereby facilitating clinical decision-making to improve maternal and fetal well-being.


Asunto(s)
Adaptación Fisiológica/inmunología , Trabajo de Parto Inducido , Trabajo de Parto/inmunología , Adulto , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Inmunoensayo , Modelos Lineales , Aprendizaje Automático , Embarazo , Factores de Transcripción STAT/inmunología , Transducción de Señal/inmunología , Estados Unidos
8.
Curr Opin Crit Care ; 27(6): 717-725, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545029

RESUMEN

PURPOSE OF REVIEW: Postoperative complications including infections, cognitive impairment, and protracted recovery occur in one-third of the 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on our healthcare system. However, the accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain as major clinical challenges. RECENT FINDINGS: Although multifactorial in origin, the dysregulation of immunological mechanisms that occur in response to surgical trauma is a key determinant of postoperative complications. Prior research, primarily focusing on inflammatory plasma markers, has provided important clues regarding their pathogenesis. However, the recent advent of high-content, single-cell transcriptomic, and proteomic technologies has considerably improved our ability to characterize the immune response to surgery, thereby providing new means to understand the immunological basis of postoperative complications and to identify prognostic biological signatures. SUMMARY: The comprehensive and single-cell characterization of the human immune response to surgery has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers, ultimately providing patients and surgeons with actionable information to improve surgical outcomes. Although recent studies have generated a wealth of knowledge, laying the foundation for a single-cell atlas of the human immune response to surgery, larger-scale multiomic studies are required to derive robust, scalable, and sufficiently powerful models to accurately predict the risk of postoperative complications in individual patients.


Asunto(s)
Complicaciones Posoperatorias , Proteómica , Biomarcadores , Humanos , Inmunidad , Pronóstico
9.
Front Immunol ; 12: 714090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497610

RESUMEN

Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.


Asunto(s)
Biomarcadores , Desarrollo Embrionario/inmunología , Fenómenos del Sistema Inmunológico , Análisis de la Célula Individual , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Comunicación Celular , Susceptibilidad a Enfermedades/inmunología , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Inmunomodulación , Recién Nacido , Nacimiento Prematuro , Transducción de Señal , Análisis de la Célula Individual/métodos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
10.
Sci Transl Med ; 13(592)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952678

RESUMEN

Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.


Asunto(s)
Inicio del Trabajo de Parto , Metaboloma , Proteoma , Biomarcadores , Femenino , Humanos , Inicio del Trabajo de Parto/inmunología , Inicio del Trabajo de Parto/metabolismo , Estudios Longitudinales , Embarazo
11.
bioRxiv ; 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33594362

RESUMEN

The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression.

12.
Nat Mach Intell ; 2(10): 619-628, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33294774

RESUMEN

The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.

14.
Nat Commun ; 11(1): 3737, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719355

RESUMEN

Glucocorticoids (GC) are a controversial yet commonly used intervention in the clinical management of acute inflammatory conditions, including sepsis or traumatic injury. In the context of major trauma such as surgery, concerns have been raised regarding adverse effects from GC, thereby necessitating a better understanding of how GCs modulate the immune response. Here we report the results of a randomized controlled trial (NCT02542592) in which we employ a high-dimensional mass cytometry approach to characterize innate and adaptive cell signaling dynamics after a major surgery (primary outcome) in patients treated with placebo or methylprednisolone (MP). A robust, unsupervised bootstrap clustering of immune cell subsets coupled with random forest analysis shows profound (AUC = 0.92, p-value = 3.16E-8) MP-induced alterations of immune cell signaling trajectories, particularly in the adaptive compartments. By contrast, key innate signaling responses previously associated with pain and functional recovery after surgery, including STAT3 and CREB phosphorylation, are not affected by MP. These results imply cell-specific and pathway-specific effects of GCs, and also prompt future studies to examine GCs' effects on clinical outcomes likely dependent on functional adaptive immune responses.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Artroplastia de Reemplazo de Cadera/efectos adversos , Glucocorticoides/farmacología , Heridas y Lesiones/etiología , Heridas y Lesiones/inmunología , Enfermedad Aguda , Anciano , Estudios de Casos y Controles , Método Doble Ciego , Fatiga/tratamiento farmacológico , Femenino , Humanos , Masculino , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , Dolor/tratamiento farmacológico , Fenotipo , Fosforilación , Factor de Transcripción STAT3/metabolismo , Resultado del Tratamiento
15.
Nat Commun ; 11(1): 3738, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719375

RESUMEN

High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters.


Asunto(s)
Algoritmos , Modelos Biológicos , Análisis de la Célula Individual , Análisis por Conglomerados , Bases de Datos como Asunto , Citometría de Flujo , Humanos
16.
Semin Immunopathol ; 42(4): 397-412, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32020337

RESUMEN

Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.


Asunto(s)
Trabajo de Parto Prematuro , Nacimiento Prematuro , Niño , Femenino , Feto , Humanos , Recién Nacido , Trabajo de Parto Prematuro/etiología , Placenta , Embarazo
17.
Front Immunol ; 10: 1305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263463

RESUMEN

Preeclampsia is one of the most severe pregnancy complications and a leading cause of maternal death. However, early diagnosis of preeclampsia remains a clinical challenge. Alterations in the normal immune adaptations necessary for the maintenance of a healthy pregnancy are central features of preeclampsia. However, prior analyses primarily focused on the static assessment of select immune cell subsets have provided limited information for the prediction of preeclampsia. Here, we used a high-dimensional mass cytometry immunoassay to characterize the dynamic changes of over 370 immune cell features (including cell distribution and functional responses) in maternal blood during healthy and preeclamptic pregnancies. We found a set of eight cell-specific immune features that accurately identified patients well before the clinical diagnosis of preeclampsia (median area under the curve (AUC) 0.91, interquartile range [0.82-0.92]). Several features recapitulated previously known immune dysfunctions in preeclampsia, such as elevated pro-inflammatory innate immune responses early in pregnancy and impaired regulatory T (Treg) cell signaling. The analysis revealed additional novel immune responses that were strongly associated with, and preceded the onset of preeclampsia, notably abnormal STAT5ab signaling dynamics in CD4+T cell subsets (AUC 0.92, p = 8.0E-5). These results provide a global readout of the dynamics of the maternal immune system early in pregnancy and lay the groundwork for identifying clinically-relevant immune dysfunctions for the prediction and prevention of preeclampsia.


Asunto(s)
Preeclampsia/inmunología , Embarazo/inmunología , Inmunidad Adaptativa , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Citometría de Flujo , Humanos , Inmunidad Innata , Inmunoensayo , Inflamación/sangre , Inflamación/complicaciones , Inflamación/inmunología , Modelos Inmunológicos , Preeclampsia/sangre , Preeclampsia/diagnóstico , Embarazo/sangre , Estudios Prospectivos , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología
18.
Brain ; 142(4): 978-991, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860258

RESUMEN

Stroke is a leading cause of cognitive impairment and dementia, but the mechanisms that underlie post-stroke cognitive decline are not well understood. Stroke produces profound local and systemic immune responses that engage all major innate and adaptive immune compartments. However, whether the systemic immune response to stroke contributes to long-term disability remains ill-defined. We used a single-cell mass cytometry approach to comprehensively and functionally characterize the systemic immune response to stroke in longitudinal blood samples from 24 patients over the course of 1 year and correlated the immune response with changes in cognitive functioning between 90 and 365 days post-stroke. Using elastic net regularized regression modelling, we identified key elements of a robust and prolonged systemic immune response to ischaemic stroke that occurs in three phases: an acute phase (Day 2) characterized by increased signal transducer and activator of transcription 3 (STAT3) signalling responses in innate immune cell types, an intermediate phase (Day 5) characterized by increased cAMP response element-binding protein (CREB) signalling responses in adaptive immune cell types, and a late phase (Day 90) by persistent elevation of neutrophils, and immunoglobulin M+ (IgM+) B cells. By Day 365 there was no detectable difference between these samples and those from an age- and gender-matched patient cohort without stroke. When regressed against the change in the Montreal Cognitive Assessment scores between Days 90 and 365 after stroke, the acute inflammatory phase Elastic Net model correlated with post-stroke cognitive trajectories (r = -0.692, Bonferroni-corrected P = 0.039). The results demonstrate the utility of a deep immune profiling approach with mass cytometry for the identification of clinically relevant immune correlates of long-term cognitive trajectories.


Asunto(s)
Cognición/fisiología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/fisiopatología , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/complicaciones , Proteína de Unión a CREB/metabolismo , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/inmunología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/inmunología , Estudios de Cohortes , Femenino , Humanos , Inmunoglobulina M , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neutrófilos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Accidente Cerebrovascular/complicaciones , Sobrevivientes
19.
Sci Immunol ; 2(15)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864494

RESUMEN

The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling-based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2-dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA