Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Comput Struct Biotechnol J ; 23: 1477-1488, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38623562

RESUMEN

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 µM) and ST132 (KD = 14.5 ± 0.1 µM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal ß-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.

2.
J Chem Inf Model ; 64(5): 1615-1627, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38356220

RESUMEN

Cancer immunotherapy harnesses the immune system to combat tumors and has emerged as a major cancer treatment modality. The PD-1/PD-L1 immune checkpoint modulates interactions between tumor cells and T cells and has been extensively targeted in cancer immunotherapy. However, the monoclonal antibodies known to target this immune checkpoint have considerable side effects, and novel PD-1/PD-L1 inhibitors are therefore required. Herein, a peptide inhibitor to disrupt PD-1/PD-L1 interactions was designed through structure-driven phage display engineering coupled to computational modification and optimization. BetaPb, a novel peptide library constructed by using the known structure of PD-1/PD-L, was used to develop inhibitors against the immune checkpoint, and specific peptides with high affinity toward PD-1 were screened through enzyme-linked immunosorbent assays, homogeneous time-resolved fluorescence, and biolayer interferometry. A potential inhibitor, B8, was preliminarily screened through biopanning. The binding affinity of B8 toward PD-1 was confirmed through computation-aided optimization. Assessment of B8 variants (B8.1, B8.2, B8.3, B8.4, and B8.5) demonstrated their attenuation of PD-1/PD-L1 interactions. B8.4 exhibited the strongest attenuation efficiency at a half-maximal effective concentration of 0.1 µM and the strongest binding affinity to PD-1 (equilibrium dissociation constant = 0.1 µM). B8.4 outperformed the known PD-1/PD-L1 interaction inhibitor PL120131 in disrupting PD-1/PD-L1 interactions, revealing that B8.4 has remarkable potential for modification to yield an antitumor agent. This study provides valuable information for the future development of peptide-based drugs, therapeutics, and immunotherapies for cancer.


Asunto(s)
Bacteriófagos , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1/química , Antígeno B7-H1/química , Péptidos/farmacología , Péptidos/química , Bacteriófagos/metabolismo
3.
Life Sci ; 337: 122338, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072190

RESUMEN

Hepatitis C virus (HCV) infection is recognized as a major causative agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV non-structural protein 5A (NS5A) is a dimeric phosphoprotein with a hyperphosphorylated form to act as a switch that regulates HCV replication and assembly. NS5A inhibitors have been utilized as the scaffold for combination therapy of direct-acting antiviral agents (DAA). However, the mode of action of NS5A inhibitors is still unclear due to the lack of mechanistic detail regarding NS5A phosphorylation and dimerization in the HCV life cycle. It has been demonstrated that phosphorylation of NS5A at Ser235 is essential for RNA replication of the JFH1 strain. In this report, we found that NS5A phosphomimetic Ser235 substitution (Ser-to-Asp mutation) formed a dimer that was resistant to disruption by NS5A inhibitors as was the NS5A resistance-associated substitution Y93H. Phosphorylation of NS5A at Ser235 residue was required for the interaction of two NS5A-WT molecules in JFH1-based cell culture system but not absolutely required for dimerization of the NS5A-Y93H mutant. Interestingly, HCV nonstructural proteins from the subgenomic replicon NS3-5A was required for NS5A-WT dimerization but not required for NS5A-Y93H dimerization. Our data suggest that spontaneous Ser235 phosphorylation of NS5A and ensuing dimerization account for resistance of the JFH1/NS5A-Y93H mutant to NS5A inhibitors.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Humanos , Hepacivirus/metabolismo , Fosforilación , Antivirales/uso terapéutico , Dimerización , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Resistencia a Medicamentos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
4.
FEBS J ; 291(6): 1264-1274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38116713

RESUMEN

HCV NS5A is a dimeric phosphoprotein involved in HCV replication. NS5A inhibitors are among direct-acting antivirals (DAA) for HCV therapy. The Y93H mutant of NS5A is resistant to NS5A inhibitors, but the precise mechanism remains unclear. In this report, we proposed a Ser38-His93-Asn91 triad to dissect the mechanism. Using pymol 1.3 software, the homology structure of JFH1 NS5A was determined based on the dimer structure of genotype 1b extracted from the database Protein DataBank (www.ebi.ac.uk/pdbsum) with codes 1ZH1 and 3FQM/3FQQ. FLAG-NS5A-WT failed to form dimer in the absence of nonstructural proteins from subgenomic replicon (NS3-5A); however, FLAG-NS5A-Y93H was able to form dimer without the aid of NS3-5A. The Ser38-His93-Asn91 triad in the dimer of the Y93H variant predicts a structural crash of the cleft receiving the NS5A inhibitor daclatasvir. The dimerization assay revealed that the existence of JFH1-NS5A-1ZH1 and -3FQM homology dimers depended on each other for existence and that both NS5A-WT 1ZH1 and 3FQM dimers cooperated to facilitate RNA replication. However, NS5A-Y93H 1ZH1 alone could form dimer and conduct RNA replication in the absence of the 3FQM structure. In conclusion, this study provides novel insight into the functional significance of the Ser38-His93-Asn91 triad in resistance of the Y93H variant to NS5A inhibitors.


Asunto(s)
Antivirales , Hepatitis C Crónica , Humanos , Antivirales/farmacología , Hepatitis C Crónica/tratamiento farmacológico , Genotipo , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Farmacorresistencia Viral/genética
5.
Biochem Biophys Res Commun ; 688: 149214, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37951154

RESUMEN

Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.


Asunto(s)
Adenocarcinoma , Inmunoconjugados , Neoplasias Pancreáticas , Animales , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Neoplasias Pancreáticas/patología , Adenocarcinoma/tratamiento farmacológico , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
6.
Heliyon ; 9(11): e21774, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034633

RESUMEN

Erythropoietin-producing hepatocyte receptor type A2 (EphA2) is a tyrosine kinase that binds to ephrins (e.g., ephrin-A1) to initiate bidirectional signaling between cells. The binding of EphA2 and ephrin-A1 leads to the inhibition of Ras-MAPK activity and tumor growth. During tumorigenesis, the normal interaction between EphA2 and ephrin-A1 is hindered, which leads to the overexpression of EphA2 and induces cancer. The overexpression of EphA2 has been identified as a notable tumor marker in diagnosing and treating pancreatic cancer. In this study, we used phage display to isolate specific antibodies against the active site of EphA2 by using a discontinuous recombinant epitope for immunization. The therapeutic efficacy and inhibition mechanism of the generated antibody against pancreatic cancer was validated and clarified. The generated antibodies were bound to the conformational epitope of endogenous EphA2 on cancer cells, thus inducing cellular endocytosis and causing EphA2 degradation. Molecule signals pAKT, pERK, pFAK, and pSTAT3 were weakened, inhibiting the proliferation and migration of pancreatic cancer cells. The humanized antibody hSD5 could effectively inhibit the growth of the xenograft pancreatic cancer tumor cells BxPc-3 and Mia PaCa-2 in mice, respectively. When antibody hSD5 was administered with gemcitabine, significantly improved effects on tumor growth inhibition were observed. Based on the efficacy of the IgG hSD5 antibodies, clinical administration of the hSD5 antibodies is likely to suppress tumors in patients with pancreatic cancer and abnormal activation or overexpression of EphA2 signaling.

7.
Eur J Med Chem ; 262: 115874, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918036

RESUMEN

Neutrophils are the most abundant immune cells. However, neutrophil dysregulation leads to acute and chronic inflammation and is involved in various diseases. The aim of this study was to develop anti-inflammatory agents in human neutrophils. A drug screening was conducted on in-house compounds with the potential to inhibit the respiratory burst, which involves the generation of superoxide anions in human neutrophils. Bioisosteric replacement was then applied to design more active derivatives. The most potent inhibitors of superoxide anion generation activity were compounds 58 and 59, which had IC50 values of 13.30 and 9.06 nM, respectively. The inhibitory effects of 58 and 59 were reversed by H89, a PKA inhibitor. PDE selective screening indicated that the best inhibitory effects were PDE4B1 and PDE4D2, and the inhibitory activities were 83% and 85%, respectively, at a 10 µM concentration of 59. The final molecular simulation experiment highlighted the slightly different binding poses of 58 and 59 in the PDE4 active site. An in vivo pharmacokinetic study revealed that the half-life of 59 was approximately 79 min when using intravenous bolus administration. This work introduced a new class structure of PDE4 inhibitors resulting in potent neutrophil inactivation activity, with the aim of contributing to new anti-inflammatory drug discovery.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Superóxidos , Humanos , Superóxidos/metabolismo , Superóxidos/farmacología , Antiinflamatorios/uso terapéutico , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pirazoles/farmacología , Pirazoles/metabolismo , Neutrófilos
9.
Eur J Pharmacol ; 960: 176146, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37884184

RESUMEN

Multidrug resistance (MDR) is considered one of the significant chemotherapy failures of cancer patients and resulting in tumor recurrence and refractory cancer. The collateral sensitivity phenomenon is suggested as a potential alternative therapy for coring multidrug resistance in cancer. To achieve better effects and reduce toxicity, a polypharmacology strategy was applied. Arctigenin has been reported as a signal transducer and activator of transcription 3 (STAT3) inhibitor as an anticancer drug with low toxicity. However, the effective dosage of arctigenin was too high for re-sensitization in MDR cell lines. Therefore, we have designed and synthesized arctigenin derivatives and have evaluated their chemoreversal effects in KBvin and KB cells. The results conveyed that compounds 9, 10, and 12 displayed significant collateral sensitivity effects on MDR cancer cells, and the corresponding calculated RF values were 32, 174, and 133, respectively. In addition, compounds 9, 10, and 12 were identified to influence the activation of STAT3 and the function of P-glycoprotein in KBvin cells. Combining the active compounds (9, 10, and 12) with paclitaxel significantly inhibits MDR tumor growth in a zebrafish xenograft tumor model without toxicity. Thus, this study provided novel effective arctigenin derivatives and is considered a potential co-treatment with paclitaxel for treating MDR tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosforilación , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/metabolismo , Animales
10.
Biochem Biophys Res Commun ; 680: 161-170, 2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37741263

RESUMEN

Studies have shown that the high expression of EphA4 in gastric cancer tissues may correlate with unfavorable clinical pathological characteristics. Therefore, EphA4 may be an effective target for treating gastric cancer in addition to HER-2/neu. In this study, generated scFv S3 can bind endogenous EphA4 of gastric cancer cells and has significant membrane staining. Additionally, scFv S3 binding to EphA4 inhibits the growth and migration of cancer cells and the growth induction that ephrinA1 generates in gastric cancer cells. We found that EphA4 molecules may degrade through antibody treatment of cells, and the increase in LAMP1 and LAMP2 indicates that lysosome is involved in the degradation. The scFv S3 administration leads to the signals pAKT, pERK, and pSTAT3 decrease in cancer cells. The xenograft model of HER-2/neu low expressing gastric cancer cell SNU-16 exhibits better therapeutic effects by scFv S3 than trastuzumab scFv. The scFv S3 administration in vivo can degrade EphA4 molecules in tumor tissues, decreasing Ki67 and increasing cleaved C3 molecule expression. Furthermore, we identified and validated that scFv S3 generates essential ionic bonding with R162 on EphA4. The antibody may provide effective treatment for patients with gastric cancer and abnormal activation or overexpression of EphA4 signaling.


Asunto(s)
Anticuerpos de Cadena Única , Neoplasias Gástricas , Humanos , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Anticuerpos de Cadena Única/farmacología , Animales
11.
Front Pharmacol ; 14: 1125414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416063

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a challenge for public health globally since transmission of different variants of the virus does not seem to be effectively affected by the current treatments and vaccines. During COVID-19 the outbreak in Taiwan, the patients with mild symptoms were improved after the treatment with NRICM101, a traditional Chinese medicine formula developed by our institute. Here, we investigated the effect and mechanism of action of NRICM101 on improval of COVID-19-induced pulmonary injury using S1 subunit of the SARS-CoV-2 spike protein-induced diffuse alveolar damage (DAD) of hACE2 transgenic mice. The S1 protein induced significant pulmonary injury with the hallmarks of DAD (strong exudation, interstitial and intra-alveolar edema, hyaline membranes, abnormal pneumocyte apoptosis, strong leukocyte infiltration, and cytokine production). NRICM101 effectively reduced all of these hallmarks. We then used next-generation sequencing assays to identify 193 genes that were differentially expressed in the S1+NRICM101 group. Of these, three (Ddit4, Ikbke, Tnfaip3) were significantly represented in the top 30 enriched downregulated gene ontology (GO) terms in the S1+NRICM101 group versus the S1+saline group. These terms included the innate immune response, pattern recognition receptor (PRR), and Toll-like receptor signaling pathways. We found that NRICM101 disrupted the interaction of the spike protein of various SARS-CoV-2 variants with the human ACE2 receptor. It also suppressed the expression of cytokines IL-1ß, IL-6, TNF-α, MIP-1ß, IP-10, and MIP-1α in alveolar macrophages activated by lipopolysaccharide. We conclude that NRICM101 effectively protects against SARS-CoV-2-S1-induced pulmonary injury via modulation of the innate immune response, pattern recognition receptor, and Toll-like receptor signaling pathways to ameliorate DAD.

12.
J Nat Prod ; 86(6): 1428-1436, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37267066

RESUMEN

Traditional herbal medicine offers opportunities to discover novel therapeutics against SARS-CoV-2 mutation. The dried aerial part of mint (Mentha canadensis L.) was chosen for bioactivity-guided extraction. Seven constituents were isolated and characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Syringic acid and methyl rosmarinate were evaluated in drug combination treatment. Ten amide derivatives of methyl rosmarinate were synthesized, and the dodecyl (13) and 3-ethylphenyl (19) derivatives demonstrated significant improvement in the anti-SARS-CoV-2 plaque reduction assay, achieving IC50 of 0.77 and 2.70 µM, respectively, against Omicron BA.1 as compared to methyl rosmarinate's IC50 of 57.0 µM. Spike protein binding and 3CLpro inhibition assays were performed to explore the viral inhibition mechanism. Molecular docking of compounds 13 and 19 to 3CLpro was performed to reveal potential interaction. In summary, natural products with anti-Omicron BA.1 activity were isolated from Mentha canadensis and derivatives of methyl rosmarinate were synthesized, showing 21- to 74-fold improvement in antiviral activity against Omicron BA.1.


Asunto(s)
Productos Biológicos , COVID-19 , Mentha , Antivirales/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Antiinflamatorios no Esteroideos , Antioxidantes , Productos Biológicos/farmacología , Cinamatos , Depsidos
13.
J Pharm Pharmacol ; 75(9): 1225-1236, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364866

RESUMEN

OBJECTIVES: Theophylline is a bronchodilator with a narrow therapeutic index and primarily metabolised by cytochrome P450 (CYP) 1A2. Xin-yi-san (XYS) is a herbal formula frequently used to ameliorate nasal inflammation. This study aimed to investigate the effects of XYS and its ingredient, imperatorin, on theophylline pharmacokinetics in rats. METHODS: The kinetics of XYS- and imperatorin-mediated inhibition of theophylline oxidation were determined. Pharmacokinetics of theophylline were analysed. Comparisons were made with the CYP1A2 inhibitor, fluvoxamine. KEY FINDINGS: XYS extract and its ingredient, imperatorin, non-competitively inhibited theophylline oxidation. Fluvoxamine (50 and 100 mg/kg) and XYS (0.5 and 0.9 g/kg) significantly prolonged the time to reach the maximum plasma concentration (tmax) of theophylline by 3-10 fold. In a dose-dependent manner, XYS and imperatorin (0.1-10 mg/kg) treatments significantly decreased theophylline clearance by 27-33% and 19-56%, respectively. XYS (0.9 g/kg) and imperatorin (10 mg/kg) significantly prolonged theophylline elimination half-life by 29% and 142%, respectively. Compared with the increase (51-112%) in the area under curve (AUC) of theophylline by fluvoxamine, the increase (27-57%) by XYS was moderate. CONCLUSIONS: XYS decreased theophylline clearance primarily through imperatorin-suppressed theophylline oxidation. Further human studies are essential for the dose adjustment in the co-medication regimen.


Asunto(s)
Interacciones de Hierba-Droga , Teofilina , Ratas , Humanos , Animales , Teofilina/farmacocinética , Fluvoxamina/farmacología , Broncodilatadores/farmacocinética
14.
Bioorg Chem ; 138: 106581, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37172437

RESUMEN

Inhibition of steroid sulfatase (STS) decreases estrogen production and thus, suppresses tumor proliferation. Inspired by irosustat, the first STS inhibitor in clinical trials, we explored twenty-one tricyclic and tetra-heterocyclic coumarin-based derivatives. Their STS enzyme kinetic parameters, docking models, and cytotoxicity toward breast cancer and normal cells were evaluated. Tricyclic derivative 9e and tetracyclic derivative 10c were the most promising irreversible inhibitors developed in this study, with KI of 0.05 and 0.4 nM, and kinact/KI ratios of 28.6 and 19.1 nM-1min-1 on human placenta STS, respectively.


Asunto(s)
Neoplasias de la Mama , Esteril-Sulfatasa , Embarazo , Femenino , Humanos , Cinética , Relación Estructura-Actividad , Ácidos Sulfónicos , Neoplasias de la Mama/tratamiento farmacológico , Cumarinas/farmacología , Cumarinas/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
15.
J Biol Eng ; 17(1): 30, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095503

RESUMEN

BACKGROUND: The main commercially available methods for detecting small molecules of mycotoxins in traditional Chinese medicine (TCM) and functional foods are enzyme-linked immunosorbent assay and mass spectrometry. Regarding the development of diagnostic antibody reagents, effective methods for the rapid preparation of specific monoclonal antibodies are inadequate. METHODS: In this study, a novel synthetic phage-displayed nanobody Golden Glove (SynaGG) library with a glove-like cavity configuration was established using phage display technology in synthetic biology. We applied this unique SynaGG library on the small molecule aflatoxin B1 (AFB1), which has strong hepatotoxicity, to isolate specific nanobodies with high affinity for AFB1. RESULT: These nanobodies exhibit no cross-reactivity with the hapten methotrexate, which is recognized by the original antibody template. By binding to AFB1, two nanobodies can neutralize AFB1-induced hepatocyte growth inhibition. Using molecular docking, we found that the unique non-hypervariable complementarity-determining region 4 (CDR4) loop region of the nanobody was involved in the interaction with AFB1. Specifically, the CDR4's positively charged amino acid arginine directed the binding interaction between the nanobody and AFB1. We then rationally optimized the interaction between AFB1 and the nanobody by mutating serine at position 2 into valine. The binding affinity of the nanobody to AFB1 was effectively improved, and this result supported the use of molecular structure simulation for antibody optimization. CONCLUSION: In summary, this study revealed that the novel SynaGG library, which was constructed through computer-aided design, can be used to isolate nanobodies that specifically bind to small molecules. The results of this study could facilitate the development of nanobody materials to detect small molecules for the rapid screening of TCM materials and foods in the future.

16.
Mar Drugs ; 21(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37103364

RESUMEN

Immunogenic cell death (ICD) refers to a type of cell death that stimulates immune responses. It is characterized by the surface exposure of damage-associated molecular patterns (DAMPs), which can facilitate the uptake of antigens by dendritic cells (DCs) and stimulate DC activation, resulting in T cell immunity. The activation of immune responses through ICD has been proposed as a promising approach for cancer immunotherapy. The marine natural product crassolide, a cembranolide isolated from the Formosan soft coral Lobophytum michaelae, has been shown to have cytotoxic effects on cancer cells. In this study, we investigated the effects of crassolide on the induction of ICD, the expression of immune checkpoint molecules and cell adhesion molecules, as well as tumor growth in a murine 4T1 mammary carcinoma model. Immunofluorescence staining for DAMP ectolocalization, Western blotting for protein expression and Z'-LYTE kinase assay for kinase activity were performed. The results showed that crassolide significantly increased ICD and slightly decreased the expression level of CD24 on the surface of murine mammary carcinoma cells. An orthotopic tumor engraftment of 4T1 carcinoma cells indicated that crassolide-treated tumor cell lysates stimulate anti-tumor immunity against tumor growth. Crassolide was also found to be a blocker of mitogen-activated protein kinase 14 activation. This study highlights the immunotherapeutic effects of crassolide on the activation of anticancer immune responses and suggests the potential clinical use of crassolide as a novel treatment for breast cancer.


Asunto(s)
Antozoos , Antineoplásicos , Carcinoma , Proteína Quinasa 14 Activada por Mitógenos , Animales , Ratones , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Línea Celular Tumoral
17.
Cell Mol Life Sci ; 80(4): 101, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36935456

RESUMEN

Pdia4 has been characterized as a key protein that positively regulates ß-cell failure and diabetes via ROS regulation. Here, we investigated the function and mechanism of PS1, a Pdia4 inhibitor, in ß-cells and diabetes. We found that PS1 had an IC50 of 4 µM for Pdia4. Furthermore, PS1 alone and in combination with metformin significantly reversed diabetes in db/db mice, 6 to 7 mice per group, as evidenced by blood glucose, glycosylated hemoglobin A1c (HbA1c), glucose tolerance test, diabetic incidence, survival and longevity (P < 0.05 or less). Accordingly, PS1 reduced cell death and dysfunction in the pancreatic ß-islets of db/db mice as exemplified by serum insulin, serum c-peptide, reactive oxygen species (ROS), islet atrophy, and homeostatic model assessment (HOMA) indices (P < 0.05 or less). Moreover, PS1 decreased cell death in the ß-islets of db/db mice. Mechanistic studies showed that PS1 significantly increased cell survival and insulin secretion in Min6 cells in response to high glucose (P < 0.05 or less). This increase could be attributed to a reduction in ROS production and the activity of electron transport chain complex 1 (ETC C1) and Nox in Min6 cells by PS1. Further, we found that PS1 inhibited the enzymatic activity of Pdia4 and mitigated the interaction between Pdia4 and Ndufs3 or p22 in Min6 cells (P < 0.01 or less). Taken together, this work demonstrates that PS1 negatively regulated ß-cell pathogenesis and diabetes via reduction of ROS production involving the Pdia4/Ndufs3 and Pdia4/p22 cascades.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucemia/metabolismo , Ratones Endogámicos , Ratones Endogámicos C57BL , Proteína Disulfuro Isomerasas/metabolismo
18.
Food Funct ; 13(24): 12632-12647, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36416361

RESUMEN

Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified ß-amyloid (Aß) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 µM) and TCM2 (Quercetin; IC50 = 4.3 µM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas , Inhibidores Enzimáticos , Anciano , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Farmacóforo , Quercetina/aislamiento & purificación , Quercetina/farmacología , Aminoaciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
19.
Bioorg Chem ; 129: 106148, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244324

RESUMEN

Steroid sulfatase inhibitors block the local production of estrogenic steroids and are attractive agents for the treatment of estrogen-dependent cancers. Inspiration of coumarin-based inhibitors, we synthesized thirty-two 5-oxa-1,2,3,4-tetrahydro-2H-chromeno-(3,4-c)pyridin-8-yl sulfamates, focusing on the substitution derivatives on the adjacent phenyl ring and evaluated their abilities to block STS from human placenta and MCF-7 cells. SAR analysis revealed that the incorporation of chlorine at either meta and/or para position of the adjacent phenyl ring of the tricyclic skeleton enhanced STS inhibition. Di-substitutions at the adjacent phenyl ring were superior to mono and tri-substitutions. Further kinetic analysis of these compounds revealed that chloride-bearing compounds, such as 19m, 19v, and 19w, had KI of 0.02 to 0.11 nM and kinact/KI ratios of 8.8-17.5 nM-1min-1, a parameter indicated for the efficiency of irreversible inhibition. We also used the docking model to illustrate the difference in STS inhibitory potency of compounds. Finally, the safety and anti-cancer activity of selected compounds 19m, 19v, and 19w were also studied, showing the results of low cytotoxicity on NHDF cell line and being more potent than irosustat on ZR-75-1 cell, which was a hormone-dependent cancer cell line with high STS expression.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Placenta , Esteril-Sulfatasa , Ácidos Sulfónicos , Femenino , Humanos , Embarazo , Inhibidores Enzimáticos/farmacología , Cinética , Esteril-Sulfatasa/antagonistas & inhibidores , Relación Estructura-Actividad , Ácidos Sulfónicos/química , Ácidos Sulfónicos/farmacología , Placenta/enzimología , Células MCF-7
20.
Pharmacol Res ; 184: 106424, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36064077

RESUMEN

The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1ß, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lesión Pulmonar , Embolia Pulmonar , Enzima Convertidora de Angiotensina 2 , Quimiocina CCL5 , Citocinas , Fibrosis , Humanos , Interleucina-6/metabolismo , Interleucina-8 , Lesión Pulmonar/tratamiento farmacológico , Pandemias , Fosfatidilinositol 3-Quinasas , Inhibidor 1 de Activador Plasminogénico , Proteínas Proto-Oncogénicas c-akt , Embolia Pulmonar/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de von Willebrand
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA