Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
BMJ Neurol Open ; 6(1): e000563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38268758

RESUMEN

Background: Labyrinthine haemorrhage is a rare vascular disorder often presenting with the triad of acute vertigo, sudden sensorineural hearing loss and tinnitus. There are minimal reports on imaging progression over the acute period. Index case: A woman in her mid-40s presented with acute vertigo, sudden left-sided hearing loss and tinnitus, consistent with acute unilateral audiovestibular loss. Left peripheral vestibular hypofunction was confirmed acutely on video head impulse testing, and pure tone audiometry showed a profound left sensorineural hearing loss. An MRI brain including diffusion-weighted imaging within 24 hours was normal. Delayed MRI brain and internal acoustic canal after 7 days demonstrated increased 3D fluid-attenuated inversion recovery and T1 signal throughout the left cochlea and semicircular canals, without contrast enhancement. This was consistent with labyrinthine haemorrhage. She received early oral prednisone followed by three doses of intratympanic dexamethasone. At 12 months follow-up the patient remained profoundly deaf, however, balance and vestibular symptoms improved with early vestibular physical rehabilitation. Conclusion: We report a case of acute labyrinthine haemorrhage missed on an early MRI brain sequence. This diagnosis should be considered in presentations of acute audiovestibular loss, and delayed MRI including internal auditory canal sequences may be important for diagnosis.

2.
J Ovarian Res ; 17(1): 15, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216951

RESUMEN

BACKGROUND: Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS: Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS: We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION: Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Gelsolina/genética , Gelsolina/metabolismo , Metilación de ADN , Epigénesis Genética , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Mensajero/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1205385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404312

RESUMEN

Introduction: The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods: FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results: miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion: We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Síndrome del Ovario Poliquístico , Humanos , Femenino , Líquido Folicular/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Vesículas Extracelulares/metabolismo
4.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37174032

RESUMEN

BACKGROUND: Ovarian cancer (OVCA) is the most fatal gynecological cancer with late diagnosis and plasma gelsolin (pGSN)-mediated chemoresistance representing the main obstacles to treatment success. Since there is no reliable approach to diagnosing patients at an early stage as well as predicting chemoresponsiveness, there is an urgent need to develop a diagnostic platform for such purposes. Small extracellular vesicles (sEVs) are attractive biomarkers given their potential accuracy for targeting tumor sites. METHODS: We have developed a novel biosensor which utilizes cysteine-functionalized gold nanoparticles that simultaneously bind to cisplatin (CDDP) and plasma/cell-derived EVs, affording us the advantage of predicting OVCA chemoresponsiveness, and early diagnosis using surface-enhanced Raman spectroscopy. RESULTS: We found that pGSN regulates cortactin (CTTN) content resulting in the formation of nuclear- and cytoplasmic-dense granules facilitating the secretion of sEVs carrying CDDP; a strategy used by resistant cells to survive CDDP action. The clinical utility of the biosensor was tested and subsequently revealed that the sEV/CA125 ratio outperformed CA125 and sEV individually in predicting early stage, chemoresistance, residual disease, tumor recurrence, and patient survival. CONCLUSION: These findings highlight pGSN as a potential therapeutic target and provide a potential diagnostic platform to detect OVCA earlier and predict chemoresistance; an intervention that will positively impact patient-survival outcomes.

5.
Front Immunol ; 14: 1104550, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033997

RESUMEN

Polycystic ovarian syndrome (PCOS) is associated with hyperandrogenemia and ovarian antral follicle growth arrest. We have previously demonstrated that androgen-induced exosomal release of miR-379-5p (miR379) from preantral follicle granulosa cells increases the proliferation of target cells via phosphoinositide-dependent kinase 1 (PDK1) upregulation. Androgen also increases inflammatory M1 macrophage abundance, but reduces anti-inflammatory M2 polarization in rat antral and preovulatory follicles. However, the role of small extracellular vesicles (sEVs; also known as exosomes) secretion in determining the cellular content and function of miRNAs in exosome-receiving cells is largely unknown. Our objectives were to determine: 1) the regulatory role of granulosa cells (GC)-derived exosomal miR379 on macrophage polarization and ovarian inflammation; 2) whether miR379-induced M1 polarization regulates GC proliferation; and 3) if this regulated process is follicular stage-specific. Compared with non-PCOS subjects, PCOS subjects had a higher M1/M2 ratio, supporting the concept that PCOS is an inflammatory condition. Ovarian overexpression of miR379 increased the number of M1 macrophages and the M1/M2 ratio in preantral follicles specifically. Transfection of macrophages with a miR379 mimic reduced the cellular content of PDK1 and induced M0→M1 polarization; whereas its inhibitor polarized M0→M2. Conditioned media from macrophages transfected with miR379 mimic and follicular fluid from PCOS subjects had higher galectin-3 content, a pro-inflammatory cytokine which specifically suppresses human antral follicle GC proliferation. These results indicate that miR379 inhibits M2 macrophage polarization, a condition which suppresses GC proliferation in a follicle stage-dependent manner, as exhibited in PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratas , Animales , Síndrome del Ovario Poliquístico/genética , Andrógenos , Células de la Granulosa , MicroARNs/genética , Macrófagos
6.
J Ovarian Res ; 16(1): 74, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046285

RESUMEN

Polycystic ovarian syndrome (PCOS) is a complex multi-factorial syndrome associated with androgen excess and anovulatory infertility. In the current study, we investigated the role of dihydrotestosterone-induced exosomal miR-379-5p release in determining the destiny of the developing follicles. Our hypothesis was that androgen regulates granulosa cell miR-379-5p content by facilitating its exosomal release in a follicular-stage dependent manner, a process which determines granulosa cell fate. Compared to human non-PCOS subjects, individuals with PCOS exhibit higher follicular fluid free testosterone levels, lower exosomal miR-379-5p content and granulosa cell proliferation. Androgenized rats exhibited lower granulosa cell miR-379-5p but higher phosphoinositide-dependent kinase-1 (PDK1; a miR-379-5p target) content and proliferation. Androgen reduced granulosa cell miR-379-5p content by increasing its exosomal release in preantral follicles, but not in antral follicles in vitro. Studies with an exosomal release inhibitor confirmed that androgen-induced exosomal miR-379-5p release decreased granulosa cell miR-379-5p content and proliferation. Ovarian overexpression of miR-379-5p suppressed granulosa cell proliferation, and basal and androgen-induced preantral follicle growth in vivo. These findings suggest that increased exosomal miR-379-5p release in granulosa cells is a proliferative response to androgenic stimulation specific for the preantral stage of follicle development and that dysregulation of this response at the antral stage is associated with follicular growth arrest, as observed in human PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratas , Animales , Andrógenos/farmacología , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/genética , Células de la Granulosa , MicroARNs/genética
7.
J Ovarian Res ; 16(1): 14, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36642715

RESUMEN

BACKGROUND: Resistance to chemotherapy continues to be a challenge when treating epithelial ovarian cancer (EOC), contributing to low patient survival rates. While CA125, the conventional EOC biomarker, has been useful in monitoring patients' response to therapy, there are no biomarkers used to predict treatment response prior to chemotherapy. Previous work in vitro showed that plasma gelsolin (pGSN) is highly expressed in chemoresistant EOC cell lines, where it is secreted in small extracellular vesicles (sEVs). Whether sEVs from tumour cells are secreted into the circulation of EOC patients and could be used to predict patient chemoresponsiveness is yet to be determined. This study aims to identify if sEV-pGSN in the circulation could be a predictive biomarker for chemoresistance in EOC. METHODS: Sandwich ELISA was used to measure pGSN concentrations from plasma samples of 96 EOC patients (primarily high grade serous EOC). sEVs were isolated using ExoQuick ULTRA and characterized using western blot, nanoparticle tracking analysis, and electron microscopy after which pGSN was measured from the sEVs. Patients were stratified as platinum sensitive or resistant groups based on first progression free interval (PFI) of 6 or 12 months. RESULTS: Total circulating pGSN was significantly decreased and sEV-pGSN increased in patients with a PFI ≤ 12 months (chemoresistant) compared to those with a PFI > 12 months (chemosensitive). The ratio of total pGSN to sEV-pGSN further differentiated these groups and was a strong predictive marker for chemoresistance (sensitivity: 73.91%, specificity: 72.46%). Predetermined CA125 was not different between chemosensitive and chemoresistant groups and was not predictive of chemoresponsiveness prior to treatment. When CA125 was combined with the ratio of total pGSN/sEV-pGSN, it was a significant predictor of chemoresponsiveness, but the test performance was not as robust as the total pGSN/sEV-pGSN alone. CONCLUSIONS: Total pGSN/sEV-pGSN was the best predictor of chemoresponsiveness prior to treatment, outperforming the individual biomarkers (CA125, total pGSN, and sEV-pGSN). This multianalyte predictor of chemoresponsiveness could help to inform physicians' treatment and follow up plan at the time of EOC diagnosis, thus improving patients' outcomes.


Asunto(s)
Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Gelsolina/uso terapéutico , Biomarcadores , Neoplasias Ováricas/patología
8.
Cells ; 11(20)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291171

RESUMEN

Ovarian Cancer (OVCA) is the most fatal gynecologic cancer and has a 5-year survival rate less than 45%. This is mainly due to late diagnosis and drug resistance. Overexpression of plasma gelsolin (pGSN) is key contributing factor to OVCA chemoresistance and immunosuppression. Gelsolin (GSN) is a multifunctional protein that regulates the activity of actin filaments by cleavage, capping, and nucleation. Generally, it plays an important role in cytoskeletal remodeling. GSN has three isoforms: cytosolic GSN, plasma GSN (pGSN), and gelsolin-3. Exosomes containing pGSN are released and contribute to the progression of OVCA. This review describes how pGSN overexpression inhibits chemotherapy-induced apoptosis and triggers positive feedback loops of pGSN expression. It also describes the mechanisms by which exosomal pGSN promotes apoptosis and dysfunction in tumor-killing immune cells. A discussion on the potential of pGSN as a prognostic, diagnostic, and therapeutic marker is also presented herein.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Gelsolina/metabolismo , Resistencia a Antineoplásicos , Microambiente Tumoral , Neoplasias Ováricas/patología , Antineoplásicos/farmacología
9.
Front Immunol ; 13: 1011084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148234

RESUMEN

Background: Prognostic markers for COVID-19 disease outcome are currently lacking. Plasma gelsolin (pGSN) is an actin-binding protein and an innate immune marker involved in disease pathogenesis and viral infections. Here, we demonstrate the utility of pGSN as a prognostic marker for COVID-19 disease outcome; a test performance that is significantly improved when combined with cytokines and antibodies compared to other conventional markers such as CRP and ferritin. Methods: Blood samples were longitudinally collected from hospitalized COVID-19 patients as well as COVID-19 negative controls and the levels of pGSN in µg/mL, cytokines and anti- SARS-CoV-2 spike protein antibodies assayed. Mean ± SEM values were correlated with clinical parameters to develop a prognostic platform. Results: pGSN levels were significantly reduced in COVID-19 patients compared to healthy individuals. Additionally, pGSN levels combined with plasma IL-6, IP-10 and M-CSF significantly distinguished COVID-19 patients from healthy individuals. While pGSN and anti-spike IgG titers together strongly predict COVID-19 severity and death, the combination of pGSN and IL-6 was a significant predictor of milder disease and favorable outcomes. Conclusion: Taken together, these findings suggest that multi-parameter analysis of pGSN, cytokines and antibodies could predict COVID-19 hospitalization outcomes with greater certainty compared with conventional clinical laboratory markers such as CRP and ferritin. This research will inform and improve clinical management and health system interventions in response to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Gelsolina , Biomarcadores , Quimiocina CXCL10 , Citocinas , Ferritinas , Hospitalización , Humanos , Inmunoglobulina G , Interleucina-6 , Factor Estimulante de Colonias de Macrófagos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
Asian Pac J Cancer Prev ; 23(8): 2661-2669, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037120

RESUMEN

OBJECTIVE: Ovarian cancer is one of the leading causes of cancer-related mortality in women, and is often associated with drug resistance. Therefore, finding effective drugs, including naturally derived compounds, is urgently needed. Herein, we aimed to test the anti-cancer potential of gallic acid monohydrate (GA) and its congeners on cisplatin-sensitive (A2780S), and resistant (A2780CP) ovarian cancer and normal ovarian (HOSE6-3) cell lines. METHODS: Cytotoxicity was assessed by AlamarBlue and CCK08 assays by exposing cells to different concentrations of cisplatin (0-21µg/mL), GA and its congeners (0-100µg/mL), and a combination of GA and cisplatin. Apoptosis was estimated by Hoechst stain and monitoring the relative RNA expression of the apoptotic effector caspase-3 using qRT-PCR. RESULTS: GA decreased cell viability in a concentration-dependent manner in all cell lines, with an IC50 of 19.39µg/mL (A2780S), 35.59 µg/mL (A2780CP), and 49.32µg/mL (HOSE6-3). GA displayed higher cytotoxicity than its congeners. An apoptotic rate estimation of approximately 20% and 30% was obtained in A2780S and A2780CP. While the cytotoxicity observed with cisplatin and GA was comparable, combining the two enhanced the cytotoxicity significantly, especially in the A2780CP cell line (p<0.05). CONCLUSION: These data suggest that GA may help overcome the resistance. Hence, the cytotoxic effects of GA, especially on chemo-resistant ovarian cancer cells merit further investigation.
.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Ácido Gálico/farmacología , Humanos , Neoplasias Ováricas/metabolismo
11.
J Ovarian Res ; 15(1): 70, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668443

RESUMEN

BACKGROUND: Mitochondrial dynamics (e.g. fission/fusion) play an important role in controlling chemoresistance in representative gynecologic malignancies, ovarian and cervical cancer. Processing the long form of Optic atrophy (L-Opa)1 is a distinctive character of mitochondrial fragmentation, associated with chemosensitivity. Here, we examined the role of prohibitin (Phb)1 in increasing L-Opa1 processing via the regulating mitochondrial protease, Oma1 and its direct interaction with p-p53 (ser15) and pro-apoptotic Bcl-2 antagonist/killer (Bak) 1 in the signaling axis and if this phenomenon is associated with prognosis of patients. METHODS: We compared Cisplatin (CDDP)-induced response of mitochondrial dynamics, molecular interaction among p-p53 (ser15)-Phb1-Bak, and chemoresponsiveness in paired chemosensitive and chemoresistant gynecologic cancer cells (ovarian and cervical cancer cell lines) using western blot, immunoprecipitation, sea horse, and immunofluorescence. Translational strategy with proximity ligation assessment in phb1-p-p53 (ser15) in human ovarian tumor sections further confirmed in vitro finding, associated with clinical outcome. RESULTS: We report that: (1) Knock-down of Phb1 prevents Cisplatin (cis-diamine-dichloroplatinum; CDDP) -induced changes in mitochondrial fragmentation and Oma1 mediated cleavage, and Opa1 processing; (2) In response to CDDP, Phb1 facilitates the p-p53 (ser15)-Phb1-Bak interaction in mitochondria in chemosensitive gynecologic cancer cells but not in chemoresistant cells; (3) Akt overexpression results in suppressed p-p53(Ser15)-Phb1 interaction and dysregulated mitochondrial dynamics, and (4) Consistent with in vitro findings, proximity ligation assessment (PLA) in human ovarian tumor sections demonstrated that p-p53(ser15)-Phb1-Bak interaction in mitochondria is associated with better chemoresponsiveness and clinical outcome of patients. Determining the molecular mechanisms by which Phb1 facilitates mitochondrial fragmentation and interacts with p53 may advance the current understanding of chemoresistance and pathogenesis of gynecologic cancer. CONCLUSION: Determining the key molecular mechanisms by which Phb1 facilitates the formation of p-p53 (ser15)-Bak-Phb1 and its involvement in the regulation of mitochondrial dynamics and apoptosis may ultimately contribute to the current understanding of molecular and cellular basis of chemoresistance in this gynecologic cancer.


Asunto(s)
Antineoplásicos , Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Dinámicas Mitocondriales , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Prohibitinas , Proteína p53 Supresora de Tumor/metabolismo
12.
Aust J Gen Pract ; 51(4): 199-206, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35362004

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a multifocal inflammatory central nervous system disorder. There are now many highly effective disease-modifying therapies (DMTs) available as treatment options, which have a significant impact on disease activity and long-term disability. OBJECTIVE: The aim of this article is to provide a concise overview of the diagnosis, DMTs and prognosis of MS. DISCUSSION: The diagnosis of MS is made on clinicoradiological grounds to prove dissemination of disease in both time and space in the nervous system. While the expanding options of DMTs have had a significant impact on disability, they make medication selection for individual patients more complicated. Patients with MS often have a model of care shared between the neurologist and the general practitioner. This review article summarises the key aspects of the diagnosis, DMTs and prognosis of MS relevant to the general practitioner.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/tratamiento farmacológico , Pronóstico
13.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35205790

RESUMEN

Ovarian cancer (OVCA) is the most lethal gynaecological cancer with a 5-year survival rate less than 50%. Despite new therapeutic strategies, such as immune checkpoint blockers (ICBs), tumor recurrence and drug resistance remain key obstacles in achieving long-term therapeutic success. Therefore, there is an urgent need to understand the cellular mechanisms of immune dysregulation in chemoresistant OVCA in order to harness the host's immune system to improve survival. The over-expression of plasma gelsolin (pGSN) mRNA is associated with a poorer prognosis in OVCA patients; however, its immuno-modulatory role has not been elucidated. In this study, for the first time, we report pGSN as an inhibitor of M1 macrophage anti-tumor functions in OVCA chemoresistance. Increased epithelial pGSN expression was associated with the loss of chemoresponsiveness and poor survival. While patients with increased M1 macrophage infiltration exhibited better survival due to nitric-oxide-induced ROS accumulation in OVCA cells, cohorts with poor survival had a higher infiltration of M2 macrophages. Interestingly, increased epithelial pGSN expression was significantly associated with the reduced survival benefits of infiltrated M1 macrophages, through apoptosis via increased caspase-3 activation and reduced production of iNOS and TNFα. Additionally, epithelial pGSN expression was an independent prognostic marker in predicting progression-free survival. These findings support our hypothesis that pGSN is a modulator of inflammation and confers chemoresistance in OVCA, in part by resetting the relative abundance and function of macrophage subtypes in the ovarian tumor microenvironment. Our findings raise the possibility that pGSN may be a potential therapeutic target for immune-mediated chemoresistance in OVCA.

14.
Intern Med J ; 52(3): 356-364, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32786023

RESUMEN

Vestibular presentations are common in both the acute and recurrent setting, burdening emergency departments and community clinics alike. Commonly, an unease among the emergency or general physician is felt, and historically focus has been on gaining knowledge of each potential disease rather than honing the diagnostic process. Consequently, this paper focuses on the approach itself, helping to categorise this common complaint into one of four main syndromes: the Acute Vestibular Syndrome, Recurrent Positional Vertigo, Recurrent Spontaneous Vertigo, and Imbalance. Its simplicity is aimed to minimise uncertainty and highlight clear scenarios when to refer. Together with descriptions of the clinically relevant pathophysiology, the reader should approach the vertiginous patient with a new clarity.


Asunto(s)
Mareo , Vértigo , Enfermedad Aguda , Mareo/diagnóstico , Humanos , Náusea , Síndrome , Vértigo/diagnóstico , Vértigo/terapia
15.
Molecules ; 26(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199287

RESUMEN

High-grade epithelial ovarian cancer is a fatal disease in women frequently associated with drug resistance and poor outcomes. We previously demonstrated that a marine-derived compound MalforminA1 (MA1) was cytotoxic for the breast cancer cell line MCF-7. In this study, we aimed to examine the effect of MA1 on human ovarian cancer cells. The potential cytotoxicity of MA1was tested on cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) ovarian cancer cell lines using AlamarBlue assay, Hoechst dye, flow cytometry, Western blot, and RT-qPCR. MA1 had higher cytotoxic activity on A2780S (IC50 = 0.23 µM) and A2780CP (IC50 = 0.34 µM) cell lines when compared to cisplatin (IC50 = 31.4 µM and 76.9 µM, respectively). Flow cytometry analysis confirmed the cytotoxic effect of MA1. The synergistic effect of the two drugs was obvious, since only 13% of A2780S and 7% of A2780CP cells remained alive after 24 h of treatment with both MA1 and cisplatin. Moreover, we examined the expression of bcl2, p53, caspase3/9 genes at RNA and protein levels using RT-qPCR and Western blot, respectively, to figure out the cell death mechanism induced by MA1. A significant down-regulation in bcl2 and p53 genes was observed in treated cells compared to non-treated cells (p < 0.05), suggesting that MA1 may not follow the canonical pathway to induce apoptosis in ovarian cancer cell lines. MalforminA1 showed promising anticancer activity by inducing cytotoxicity in cisplatin-sensitive and cisplatin-resistant cancer cell lines. Interestingly, a synergistic effect was observed when MA1 was combined with cisplatin, leading to it overcoming its resistance to cisplatin.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Péptidos Cíclicos/administración & dosificación
16.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298618

RESUMEN

In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.

17.
Cancers (Basel) ; 13(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923536

RESUMEN

The fallopian tube epithelium is the site of origin for a majority of high grade serous ovarian carcinomas (HGSOC). The chemical communication between the fallopian tube and the ovary in the development of HGSOC from the fallopian tube is of interest since the fimbriated ends in proximity of the ovary harbor serous tubal intraepithelial carcinoma (STICs). Epidemiological data indicates that androgens play a role in ovarian carcinogenesis; however, the oncogenic impact of androgen exposure on the fallopian tube, or tubal neoplastic precursor lesions, has yet to be explored. In this report, imaging mass spectrometry identified that testosterone is produced by the ovary when exposed to tumorigenic fallopian tube derived PTEN deficient cells. Androgen exposure increased cellular viability, proliferation, and invasion of murine cell models of healthy fallopian tube epithelium and PAX2 deficient models of the preneoplastic secretory cell outgrowths (SCOUTs). Proliferation and invasion induced by androgen was reversed by co-treatment with androgen receptor (AR) antagonist, bicalutamide. Furthermore, ablation of phosphorylated ERK reversed proliferation, but not invasion. Investigation of two hyperandrogenic rodent models of polycystic ovarian syndrome revealed that peripheral administration of androgens does not induce fallopian proliferation in vivo. These data suggest that tumorigenic lesions in the fallopian tube may induce an androgenic microenvironment proximal to the ovary, which may in turn promote proliferation of the fallopian tube epithelium and preneoplastic lesions.

18.
Reprod Med Biol ; 20(2): 169-175, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33850449

RESUMEN

BACKGROUND: The process of follicle development is tightly regulated by pituitary gonadotropins (follicle-stimulating hormone [FSH] and luteinizing hormone [LH]) and intraovarian regulators (eg, steroids, growth factors, and cytokines). METHODS: This review outlines recent findings on the mechanisms of human follicle development, based on the research on animal models such as mice, rats, cows, and sheep. MAIN FINDINGS: Phosphatidylinositol 3-kinase/protein kinase B signaling pathway and anti-Müllerian hormone are involved in primordial follicle activation during the gonadotropin-independent phase. The intraovarian regulators, such as androgen, insulin-like growth factor system, activin, oocyte-derived factors (growth differentiation factor-9 and bone morphogenetic protein 15), and gap junction membrane channel protein (connexin), play a central role in the acquisition of FSH dependence in preantral follicles during the gonadotropin-responsive phase. Antral follicle development can be divided into FSH-dependent growth and LH-dependent maturation. The indispensable tetralogy for follicle selection and final maturation of antral follicles involves (a) acquisition of LH dependence, (b) greater capacity for E2 production, (c) activation of the IGF system, and (d) an antiapoptotic follicular microenvironment. CONCLUSION: We reproductive endocrinologists should accumulate further knowledge from animal model studies to develop methods that promote early folliculogenesis and connect to subsequent gonadotropin therapy in infertile women.

19.
Front Neurol ; 12: 607773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692738

RESUMEN

Introduction: Autoimmune encephalitis is a disorder associated with antibodies directed against central nervous system proteins with variable clinical features. This study aims to add to knowledge of the disease by reporting the details of a cohort of patients with autoimmune encephalitis in Queensland, Australia. Methodology: We surveyed patients with autoimmune encephalitis diagnosed and managed through public hospitals in Queensland, Australia between 2010 and the end of 2019. Cases were identified via case detection through a centralized diagnostic neuroimmunology laboratory (Division of Immunology, HSQ Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia) and a survey of neurologists. Data including demographic details, clinical presentation, investigation results, treatments including immune therapy and outcomes was collected. Results: Sixty cases of antibody positive autoimmune encephalitis were identified. Twenty-eight were of anti-NMDA-receptor encephalitis with other cases associated with antibodies against LGi1, Caspr2, glycine receptor, DPPX, GABAB receptor, IgLON5, GFAP, and SOX1. The number of diagnosed cases, especially of anti-NMDA-receptor encephalitis has markedly increased over the period 2017 to 2019. Clinical presentations were marked by heterogeneous symptom complexes and prolonged hospital admissions. Imaging studies were largely normal or non-specific. There was a response to immune therapy and a low mortality rate. Most cases affected by this disorder were left with ongoing symptoms associated with mild disability. Conclusion: Autoimmune encephalitis in Queensland, Australia is an increasingly common but complex clinical entity marked by heterogeneous presentations, response to immune therapy and outcome results marked by low mortality and incomplete recovery.

20.
J Ovarian Res ; 14(1): 39, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632295

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide is a major public health concern. Cancer patients are considered a vulnerable population to SARS-CoV-2 infection and may develop several COVID-19 symptoms. The heightened immunocompromised state, prolonged chronic pro-inflammatory milieu coupled with comorbid conditions are shared in both disease conditions and may influence patient outcome. Although ovarian cancer (OC) and COVID-19 are diseases of entirely different primary organs, both diseases share similar molecular and cellular characteristics in their microenvironment suggesting a potential cooperativity leading to poor outcome. In COVID-19 related cases, hospitalizations and deaths worldwide are lower in women than in males; however, comorbidities associated with OC may increase the COVID-19 risk in women. The women at the age of 50-60 years are at greater risk of developing OC as well as SARS-CoV-2 infection. Increased levels of gonadotropin and androgen, dysregulated renin-angiotensin-aldosterone system (RAAS), hyper-coagulation and chronic inflammation are common conditions observed among OC and severe cases of COVID-19. The upregulation of common inflammatory cytokines and chemokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-2, IL-6, IL-10, interferon-γ-inducible protein 10 (IP-10), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), among others in the sera of COVID-19 and OC subjects suggests potentially similar mechanism(s) involved in the hyper-inflammatory condition observed in both disease states. Thus, it is conceivable that the pathogenesis of OC may significantly contribute to the potential infection by SARS-CoV-2. Our understanding of the influence and mechanisms of SARS-CoV-2 infection on OC is at an early stage and in this article, we review the underlying pathogenesis presented by various comorbidities of OC and correlate their influence on SARS-CoV-2 infection.


Asunto(s)
COVID-19/epidemiología , COVID-19/etiología , Inflamación/epidemiología , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/patología , Comorbilidad , Citocinas/metabolismo , Femenino , Humanos , Inflamación/virología , Persona de Mediana Edad , Sistema Renina-Angiotensina/fisiología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA