Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3729, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702330

RESUMEN

The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Liposomas , Nanopartículas , Transactivadores , Humanos , Herpesvirus Humano 4/genética , Transactivadores/metabolismo , Transactivadores/genética , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Animales , Nanopartículas/química , Línea Celular Tumoral , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Activación Viral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Viral de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Femenino
2.
Clin Transl Med ; 13(11): e1481, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37983931

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS: The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS: Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION: This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Peritoneales , Neoplasias Gástricas , Animales , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Gástricas/patología , Helicobacter pylori/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Microambiente Tumoral/genética , Canales Iónicos
3.
J Pathol ; 259(2): 163-179, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420735

RESUMEN

Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they have been visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Podosomas , Humanos , Carcinoma Nasofaríngeo/patología , Podosomas/metabolismo , Podosomas/patología , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/patología , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Matriz Viral/metabolismo , Microambiente Tumoral
5.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638429

RESUMEN

Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein-Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy.

6.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34338780

RESUMEN

One of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein-Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses. Compared to 2D monolayers, the 3D spheroids showed significant increases in migration capacity, stemness characteristics, hypoxia and drug resistance. Co-culture with endothelial cells, which mimics essential interactions in the tumor microenvironment, effectively enhanced spheroid dissemination. Furthermore, RNA sequencing revealed significant changes at the transcriptional level in 3D spheroids compared to expression in 2D monolayers. In particular, we identified known (VEGF, AKT and mTOR) and novel (Wnt-ß-catenin and Eph-ephrin) cell signaling pathways that are activated in NPC spheroids. Targeting these pathways in 3D spheroids using FDA-approved drugs was effective in monoculture and co-culture. These findings provide the first demonstration of the establishment of EBV-positive and EBV-negative NPC 3D spheroids with features that resemble advanced and metastatic NPCs. Furthermore, we show that NPC spheroids have potential use in identifying new drug targets.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Línea Celular Tumoral , Células Endoteliales/metabolismo , Efrinas , Herpesvirus Humano 4/metabolismo , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Transducción de Señal , Microambiente Tumoral , beta Catenina/genética , beta Catenina/metabolismo
7.
Nat Commun ; 12(1): 4193, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234122

RESUMEN

Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/inmunología , Neoplasias Nasofaríngeas/inmunología , Escape del Tumor/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inmunología , Línea Celular Tumoral , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/terapia , Infecciones por Virus de Epstein-Barr/virología , Femenino , Regulación Viral de la Expresión Génica/inmunología , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/metabolismo , Ratones , FN-kappa B/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/virología , Nasofaringe/inmunología , Nasofaringe/patología , Nasofaringe/cirugía , Nasofaringe/virología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Escape del Tumor/efectos de los fármacos , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Commun ; 12(1): 117, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402692

RESUMEN

Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-κB pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding 68Ga-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Recurrencia Local de Neoplasia , Receptores de Somatostatina , Proteínas de la Matriz Viral , Animales , Femenino , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/mortalidad , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno/genética , Metástasis Linfática , Ratones Desnudos , Terapia Molecular Dirigida , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/virología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/virología , FN-kappa B/genética , FN-kappa B/metabolismo , Octreótido/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transducción de Señal , Análisis de Supervivencia , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Brief Bioinform ; 22(2): 1150-1160, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32484220

RESUMEN

The outbreak caused by the novel coronavirus SARS-CoV-2 has been declared a global health emergency. G-quadruplex structures in genomes have long been considered essential for regulating a number of biological processes in a plethora of organisms. We have analyzed and identified 25 four contiguous GG runs (G2NxG2NyG2NzG2) in the SARS-CoV-2 RNA genome, suggesting putative G-quadruplex-forming sequences (PQSs). Detailed analysis of SARS-CoV-2 PQSs revealed their locations in the open reading frames of ORF1 ab, spike (S), ORF3a, membrane (M) and nucleocapsid (N) genes. Identical PQSs were also found in the other members of the Coronaviridae family. The top-ranked PQSs at positions 13385 and 24268 were confirmed to form RNA G-quadruplex structures in vitro by multiple spectroscopic assays. Furthermore, their direct interactions with viral helicase (nsp13) were determined by microscale thermophoresis. Molecular docking model suggests that nsp13 distorts the G-quadruplex structure by allowing the guanine bases to be flipped away from the guanine quartet planes. Targeting viral helicase and G-quadruplex structure represents an attractive approach for potentially inhibiting the SARS-CoV-2 virus.


Asunto(s)
COVID-19/virología , G-Cuádruplex , SARS-CoV-2/química , Humanos , Simulación del Acoplamiento Molecular , Sistemas de Lectura Abierta
10.
J Exp Clin Cancer Res ; 39(1): 262, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243298

RESUMEN

BACKGROUND: Recent genomic analyses revealed that druggable molecule targets were only detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6-cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. METHODS: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response-related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. RESULTS: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro. Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo, as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro. Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo. This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. CONCLUSIONS: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


Asunto(s)
Antineoplásicos/uso terapéutico , Genómica/métodos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Piperazinas/uso terapéutico , Piridinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Humanos , Masculino , Ratones , Piperazinas/farmacología , Piridinas/farmacología , Transfección
11.
Lab Chip ; 20(22): 4175-4185, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33030494

RESUMEN

The mechanical properties of cell nuclei have been recognized to reflect and modulate important cell behaviors such as migration and cancer cell malignant tendency. However, these nuclear properties are difficult to characterize accurately using conventional measurement methods, which are often based on probing or deforming local sites over a nuclear region. The corresponding results are sensitive to the measurement position, and they are not decoupled from the cytoplasmic properties. Microfluidics is widely recognized as a promising technique for bioassay and phenotyping. In this report, we develop a simple and nondestructive approach for the single-cell quantification of nuclear elasticity based on microfluidics by considering different deformation levels of a live cell captured along a confining microchannel. We apply two inlet pressure levels to drive the flow of human nasopharyngeal epithelial cells (NP460) and human nasopharyngeal cancerous cells (NPC43) into the microchannels. A model considering the essential intracellular components (cytoplasm and nucleus) for describing the mechanics of a cell deforming along the confining microchannel is used to back-calculate the cytoplasmic and nuclear properties. On the other hand, we also apply a widely used chemical nucleus extraction technique to examine its possible effects (e.g., reduced nuclear modulus and reduced lamin A/C expression). To determine if the decoupled nuclear properties are representative of cancer-related attributes, we classify the NP460 and NPC43 cells using the decoupled physical properties as classification factors, resulting in an accuracy of 79.1% and a cell-type specificity exceeding 74%. It should be mentioned that the cells can be recollected at the device outlet after the nondestructive measurement. Hence, the reported cell elasticity measurement can be combined with downstream genetic and biochemical assays for general cell research and cancer diagnostic applications.


Asunto(s)
Núcleo Celular , Lamina Tipo A , Citoplasma , Citosol , Elasticidad , Humanos
12.
Mol Ther Nucleic Acids ; 22: 153-165, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32927364

RESUMEN

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer characterized by a high degree of recurrence, angiogenesis, and metastasis. The importance of alternative pro-angiogenesis pathways including viral factors has emerged after decades of directly targeting various signaling components. Using NPC as a model, we identified an essential oncogenic pathway underlying angiogenesis regulation that involves the inhibition of a tumor suppressor, Spry3, and its downstream targets by EBV-miR-BART10-5p (BART10-5p) and hsa-miR-18a (miR-18a). Overexpression of EBV-miR-BART10-5p and hsa-miR-18a strongly promotes angiogenesis in vitro and in vivo by regulating the expression of VEGF and HIF1-α in a Spry3-dependent manner. In vitro or in vivo treatment with iRGD-tagged exosomes containing antagomiR-BART10-5p and antagomiR-18a preferentially suppressed the angiogenesis and growth of NPC. Our findings first highlight the role of EBV-miR-BART10-5p and oncogenic hsa-miR-18a in NPC angiogenesis and also shed new insights into the clinical intervention and therapeutic strategies for nasopharyngeal carcinoma and other virus-associated tumors.

13.
Front Oncol ; 10: 600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528868

RESUMEN

Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.

15.
Sci Rep ; 10(1): 6115, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273550

RESUMEN

Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.


Asunto(s)
Monoaminooxidasa/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Epigénesis Genética , Células Epiteliales/metabolismo , Herpesvirus Humano 4/patogenicidad , Humanos , Interleucina-6/metabolismo , Monoaminooxidasa/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
16.
Semin Cancer Biol ; 61: 84-100, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31521748

RESUMEN

Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.


Asunto(s)
Transformación Celular Neoplásica/genética , Genómica , Neoplasias Nasofaríngeas/etiología , Investigación Biomédica Traslacional , Apoptosis/genética , Supervivencia Celular/genética , Transformación Celular Neoplásica/metabolismo , Epigénesis Genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Genómica/métodos , Salud Global , Herpesvirus Humano 4/fisiología , Humanos , Vigilancia Inmunológica , Incidencia , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/epidemiología , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal
17.
BMC Cancer ; 19(1): 1214, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836008

RESUMEN

BACKGROUND: Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. METHODS: To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. RESULTS: Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. CONCLUSIONS: Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular/fisiología , Monocitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Podosomas/patología , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Técnicas de Cocultivo , Humanos , Monocitos/patología , Neoplasias Pancreáticas/patología , Podosomas/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células THP-1 , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Microambiente Tumoral
18.
Front Genet ; 10: 939, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681406

RESUMEN

Cancer stem-like cells, possessing "stemness" properties, play crucial roles in progression, metastasis, and drug resistance in various cancers. Viral microRNAs (such as EBV-miR-BART7-3p), as exogenous regulators, have been discovered to regulate malignant progression of nasopharyngeal carcinoma (NPC), suggesting a possible role of viral microRNAs in imposing stemness. In this study, we found that EBV-miR-BART7-3p induce stemness of NPC cells. We firstly reported that EBV-miR-BART7-3p increased the percentage of side population cells, the development of tumor spheres, and the expression level of stemness markers in vitro. This viral microRNA also enhanced stem-like or cancer-initiating properties of NPC cells in vivo. Besides, we identified SMAD7 as a novel target gene of EBV-miR-BART7-3p in addition to PTEN gene we previously reported; this viral microRNA suppressed SMAD7, led to activation of TGF-ß signaling, and eventually enhanced the stemness of NPC cells. Silencing of SMAD7 resembled the effects generated by EBV-miR-BART7-3p in NPC cells. After reconstitution of SMAD7, EBV-miR-BART7-3p-expressing cells underwent a phenotypic reversion. EBV-positive NPC cells were used to enable experimental validation. Finally, we further discovered that EBV-miR-BART7-3p increased chemo-resistance of NPC in vitro and in vivo, supporting that EBV-miR-BART7-3 resulted in increased stemness of NPC cells and lead to drug resistance and cancer recurrence. Overall, this study uncovered a novel mechanism underlying viral microRNA-associated stemness of NPC cells. This viral microRNA and its associated cellular genes may be potential therapeutic targets for restraining chemo-resistance and recurrence of NPC.

19.
Proc Natl Acad Sci U S A ; 116(28): 14144-14153, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235597

RESUMEN

Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.


Asunto(s)
Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Código de Histonas/genética , Histonas/genética , Islas de CpG/genética , Daño del ADN/genética , Metilación de ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Regulación de la Expresión Génica/genética , Herpesvirus Humano 4/patogenicidad , Recombinación Homóloga/genética , Humanos , Homólogo 1 de la Proteína MutL/genética , Nasofaringe/crecimiento & desarrollo , Nasofaringe/patología , Nasofaringe/virología , Regiones Promotoras Genéticas
20.
J Gen Virol ; 100(6): 999-1012, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30816843

RESUMEN

Epstein-Barr virus (EBV) infection is strongly associated with nasopharyngeal carcinoma, a common cancer in Southeast Asia and certain regions of Africa. However, the dynamics of EBV episome maintenance in infected nasopharyngeal epithelial (NPE) cells remain largely undefined. Here, we report the establishment of a highly efficient cell-free EBV infection method for NPE cells. By using this method, we have defined some of the dynamic events involved in the early stage of EBV infection in NPE cells. We report, for the first time, a rapid loss of EBV copies from infected NPE cells during the first 12-72 h post-infection. The rate of EBV loss slowed at later stages of infection. Live cell imaging revealed that the freshly infected NPE cells were delayed in entry into mitosis compared with uninfected cells. Freshly infected NPE cells transcribed significantly higher levels of lytic EBV genes BZLF1 and BMRF1 yet significantly lower levels of EBER1/2 than stably infected NPE cells. Notably, there were very low or undetectable levels of protein expressions of EBNA1, LMP1, Zta and Rta in freshly infected NPE cells, whereas EBNA1 and LMP1 proteins were readily detected in stable EBV-infected NPE cells. The kinetics of EBV loss and the differential EBV gene expression profiles between freshly and stably infected NPE cells are in line with the suggestion of epigenetic changes in the EBV genome that affect viral gene expression and the adaptation of host cells to EBV infection to maintain persistent EBV infection in NPE cells.


Asunto(s)
Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Nasofaringe/virología , Línea Celular , Epigénesis Genética/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Transactivadores/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA