Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534552

RESUMEN

In this paper, we propose a dense multi-scale adaptive graph convolutional network (DMA-GCN) method for automatic segmentation of the knee joint cartilage from MR images. Under the multi-atlas setting, the suggested approach exhibits several novelties, as described in the following. First, our models integrate both local-level and global-level learning simultaneously. The local learning task aggregates spatial contextual information from aligned spatial neighborhoods of nodes, at multiple scales, while global learning explores pairwise affinities between nodes, located globally at different positions in the image. We propose two different structures of building models, whereby the local and global convolutional units are combined by following an alternating or a sequential manner. Secondly, based on the previous models, we develop the DMA-GCN network, by utilizing a densely connected architecture with residual skip connections. This is a deeper GCN structure, expanded over different block layers, thus being capable of providing more expressive node feature representations. Third, all units pertaining to the overall network are equipped with their individual adaptive graph learning mechanism, which allows the graph structures to be automatically learned during training. The proposed cartilage segmentation method is evaluated on the entire publicly available Osteoarthritis Initiative (OAI) cohort. To this end, we have devised a thorough experimental setup, with the goal of investigating the effect of several factors of our approach on the classification rates. Furthermore, we present exhaustive comparative results, considering traditional existing methods, six deep learning segmentation methods, and seven graph-based convolution methods, including the currently most representative models from this field. The obtained results demonstrate that the DMA-GCN outperforms all competing methods across all evaluation measures, providing DSC=95.71% and DSC=94.02% for the segmentation of femoral and tibial cartilage, respectively.

2.
J Funct Morphol Kinesiol ; 8(3)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37606399

RESUMEN

Identifying playing styles in football is highly valuable for achieving effective performance analysis. While there is extensive research on team styles, studies on individual player styles are still in their early stages. Thus, the aim of this systematic review was to provide a comprehensive overview of the existing literature on player styles and identify research areas required for further development, offering new directions for future research. Following the PRISMA guidelines for systematic reviews, we conducted a search using a specific strategy across four databases (PubMed, Scopus, Web of Science, and SPORTDiscus). Inclusion and exclusion criteria were applied to the initial search results, ultimately identifying twelve studies suitable for inclusion in this review. Through thematic analysis and qualitative evaluation of these studies, several key findings emerged: (a) a lack of a structured theoretical framework for player styles based on their positions within the team formation, (b) absence of studies investigating the influence of contextual variables on player styles, (c) methodological deficiencies observed in the reviewed studies, and (d) disparity in the objectives of sports science and data science studies. By identifying these gaps in the literature and presenting a structured framework for player styles (based on the compilation of all reported styles from the reviewed studies), this review aims to assist team stakeholders and provide guidance for future research endeavors.

3.
J Funct Morphol Kinesiol ; 8(2)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37092371

RESUMEN

Identifying and measuring soccer playing styles is a very important step toward a more effective performance analysis. Exploring the different game styles that a team can adopt to enable a great performance remains under-researched. To address this challenge and identify new directions in future research in the area, this paper conducted a critical review of 40 research articles that met specific criteria. Following the 22-item Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, this scoping review searched for literature on Google Scholar and Pub Med database. The descriptive and thematic analysis found that the objectives of the identified papers can be classified into three main categories (recognition and effectiveness of playing styles and contextual variables that affect them). Critically reviewing the studies, the paper concluded that: (i) factor analysis seems to be the best technique among inductive statistics; (ii) artificial intelligence (AI) opens new horizons in performance analysis, and (iii) there is a need for further research on the effectiveness of different playing styles, as well as on the impact of contextual variables on them.

4.
Comput Methods Programs Biomed ; 227: 107208, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36384059

RESUMEN

BACKGROUND AND OBJECTIVE: Multi-atlas based segmentation techniques, which rely on an atlas library comprised of training images labeled by an expert, have proven their effectiveness in multiple automatic segmentation applications. However, the usage of exhaustive patch libraries combined with the voxel-wise labeling incur a large computational cost in terms of memory requirements and execution times. METHODS: To confront this shortcoming, we propose a novel two-stage multi-atlas approach designed under the Semi-Supervised Learning (SSL) framework. The main properties of our method are as follows: First, instead of the voxel-wise labeling approach, the labeling of target voxels is accomplished here by exploiting the spectral content of globally sampled datasets from the target image, along with their spatially correspondent data collected from the atlases. Following SSL, voxels classification is boosted by incorporating unlabeled data from the target image, in addition to the labeled ones from atlas library. Our scheme integrates constructively fruitful concepts, including sparse reconstructions of voxels from linear neighborhoods, HOG feature descriptors of patches/regions, and label propagation via sparse graph constructions. Segmentation of the target image is carried out in two stages: stage-1 focuses on the sampling and labeling of global data, while stage-2 undertakes the above tasks for the out-of-sample data. Finally, we propose different graph-based methods for the labeling of global data, while these methods are extended to deal with the out-of-sample voxels. RESULTS: A thorough experimental investigation is conducted on 76 subjects provided by the publicly accessible Osteoarthritis Initiative (OAI) repository. Comparative results and statistical analysis demonstrate that the suggested methodology exhibits superior segmentation performance compared to the existing patch-based methods, across all evaluation metrics (DSC:88.89%, Precision: 89.86%, Recall: 88.12%), while at the same time it requires a considerably reduced computational load (>70% reduction on average execution time with respect to other patch-based). In addition, our approach is favorably compared against other non patch-based and deep learning methods in terms of performance accuracy (on the 3-class problem). A final experimentation on a 5-class setting of the problems demonstrates that our approach is capable of achieving performance comparable to existing state-of-the-art knee cartilage segmentation methods (DSC:88.22% and DSC:85.84% for femoral and tibial cartilage respectively).


Asunto(s)
Cartílago , Articulación de la Rodilla , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Aprendizaje Automático Supervisado , Fémur , Tibia
5.
Trop Med Infect Dis ; 7(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36422924

RESUMEN

Our study aims to describe the global distribution and dispersal patterns of the SARS-CoV-2 Omicron subvariants. Genomic surveillance data were extracted from the CoV-Spectrum platform, searching for BA.1*, BA.2*, BA.3*, BA.4*, and BA.5* variants by geographic region. BA.1* increased in November 2021 in South Africa, with a similar increase across all continents in early December 2021. BA.1* did not reach 100% dominance in all continents. The spread of BA.2*, first described in South Africa, differed greatly by geographic region, in contrast to BA.1*, which followed a similar global expansion, firstly occurring in Asia and subsequently in Africa, Europe, Oceania, and North and South America. BA.4* and BA.5* followed a different pattern, where BA.4* reached high proportions (maximum 60%) only in Africa. BA.5* is currently, by Mid-August 2022, the dominant strain, reaching almost 100% across Europe, which is the first continent aside from Africa to show increasing proportions, and Asia, the Americas, and Oceania are following. The emergence of new variants depends mostly on their selective advantage, translated as enhanced transmissibility and ability to invade people with existing immunity. Describing these patterns is useful for a better understanding of the epidemiology of the VOCs' transmission and for generating hypotheses about the future of emerging variants.

6.
Sci Rep ; 12(1): 8044, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577879

RESUMEN

Anterior cruciate ligament (ACL) tear is one of the most common knee injuries. The ACL reconstruction surgery aims to restore healthy knee function by replacing the injured ligament with a graft. Proper selection of the optimal surgery parameters is a complex task. To this end, we developed an automated modeling framework that accepts subject-specific geometries and produces finite element knee models incorporating different surgical techniques. Initially, we developed a reference model of the intact knee, validated with data provided by the Open Knee(s) project. This helped us evaluate the effectiveness of estimating ligament stiffness directly from MRI. Next, we performed a plethora of "what-if" simulations, comparing responses with the reference model. We found that (a) increasing graft pretension and radius reduces relative knee displacement, (b) the correlation of graft radius and tension should not be neglected, (c) graft fixation angle of 20[Formula: see text] can reduce knee laxity, and (d) single-versus double-bundle techniques demonstrate comparable performance in restraining knee translation. In most cases, these findings confirm reported values from comparative clinical studies. The numerical models are made publicly available, allowing for experimental reuse and lowering the barriers for meta-studies. The modeling approach proposed here can complement orthopedic surgeons in their decision-making.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía
7.
Sci Rep ; 12(1): 6647, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459787

RESUMEN

Anterior cruciate ligament (ACL) deficient and reconstructed knees display altered biomechanics during gait. Identifying significant gait changes is important for understanding normal and ACL function and is typically performed by statistical approaches. This paper focuses on the development of an explainable machine learning (ML) empowered methodology to: (i) identify important gait kinematic, kinetic parameters and quantify their contribution in the diagnosis of ACL injury and (ii) investigate the differences in sagittal plane kinematics and kinetics of the gait cycle between ACL deficient, ACL reconstructed and healthy individuals. For this aim, an extensive experimental setup was designed in which three-dimensional ground reaction forces and sagittal plane kinematic as well as kinetic parameters were collected from 151 subjects. The effectiveness of the proposed methodology was evaluated using a comparative analysis with eight well-known classifiers. Support Vector Machines were proved to be the best performing model (accuracy of 94.95%) on a group of 21 selected biomechanical parameters. Neural Networks accomplished the second best performance (92.89%). A state-of-the-art explainability analysis based on SHapley Additive exPlanations (SHAP) and conventional statistical analysis were then employed to quantify the contribution of the input biomechanical parameters in the diagnosis of ACL injury. Features, that would have been neglected by the traditional statistical analysis, were identified as contributing parameters having significant impact on the ML model's output for ACL injury during gait.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Lesiones del Ligamento Cruzado Anterior/diagnóstico , Fenómenos Biomecánicos , Marcha , Humanos , Articulación de la Rodilla , Aprendizaje Automático
8.
Viruses ; 14(3)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35337032

RESUMEN

Coronavirus disease 2019 (COVID-19) has resulted in approximately 5 million deaths around the world with unprecedented consequences in people's daily routines and in the global economy. Despite vast increases in time and money spent on COVID-19-related research, there is still limited information about the factors at the country level that affected COVID-19 transmission and fatality in EU. The paper focuses on the identification of these risk factors using a machine learning (ML) predictive pipeline and an associated explainability analysis. To achieve this, a hybrid dataset was created employing publicly available sources comprising heterogeneous parameters from the majority of EU countries, e.g., mobility measures, policy responses, vaccinations, and demographics/generic country-level parameters. Data pre-processing and data exploration techniques were initially applied to normalize the available data and decrease the feature dimensionality of the data problem considered. Then, a linear ε-Support Vector Machine (ε-SVM) model was employed to implement the regression task of predicting the number of deaths for each one of the three first pandemic waves (with mean square error of 0.027 for wave 1 and less than 0.02 for waves 2 and 3). Post hoc explainability analysis was finally applied to uncover the rationale behind the decision-making mechanisms of the ML pipeline and thus enhance our understanding with respect to the contribution of the selected country-level parameters to the prediction of COVID-19 deaths in EU.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Europa (Continente)/epidemiología , Humanos , Aprendizaje Automático , Factores de Riesgo , Máquina de Vectores de Soporte
9.
Diagnostics (Basel) ; 12(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204625

RESUMEN

The improved treatment of knee injuries critically relies on having an accurate and cost-effective detection. In recent years, deep-learning-based approaches have monopolized knee injury detection in MRI studies. The aim of this paper is to present the findings of a systematic literature review of knee (anterior cruciate ligament, meniscus, and cartilage) injury detection papers using deep learning. The systematic review was carried out following the PRISMA guidelines on several databases, including PubMed, Cochrane Library, EMBASE, and Google Scholar. Appropriate metrics were chosen to interpret the results. The prediction accuracy of the deep-learning models for the identification of knee injuries ranged from 72.5-100%. Deep learning has the potential to act at par with human-level performance in decision-making tasks related to the MRI-based diagnosis of knee injuries. The limitations of the present deep-learning approaches include data imbalance, model generalizability across different centers, verification bias, lack of related classification studies with more than two classes, and ground-truth subjectivity. There are several possible avenues of further exploration of deep learning for improving MRI-based knee injury diagnosis. Explainability and lightweightness of the deployed deep-learning systems are expected to become crucial enablers for their widespread use in clinical practice.

10.
Phys Eng Sci Med ; 45(1): 219-229, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35099771

RESUMEN

Knee Osteoarthritis (ΚΟΑ) is a degenerative joint disease of the knee that results from the progressive loss of cartilage. Due to KOA's multifactorial nature and the poor understanding of its pathophysiology, there is a need for reliable tools that will reduce diagnostic errors made by clinicians. The existence of public databases has facilitated the advent of advanced analytics in KOA research however the heterogeneity of the available data along with the observed high feature dimensionality make this diagnosis task difficult. The objective of the present study is to provide a robust Feature Selection (FS) methodology that could: (i) handle the multidimensional nature of the available datasets and (ii) alleviate the defectiveness of existing feature selection techniques towards the identification of important risk factors which contribute to KOA diagnosis. For this aim, we used multidimensional data obtained from the Osteoarthritis Initiative database for individuals without or with KOA. The proposed fuzzy ensemble feature selection methodology aggregates the results of several FS algorithms (filter, wrapper and embedded ones) based on fuzzy logic. The effectiveness of the proposed methodology was evaluated using an extensive experimental setup that involved multiple competing FS algorithms and several well-known ML models. A 73.55% classification accuracy was achieved by the best performing model (Random Forest classifier) on a group of twenty-one selected risk factors. Explainability analysis was finally performed to quantify the impact of the selected features on the model's output thus enhancing our understanding of the rationale behind the decision-making mechanism of the best model.


Asunto(s)
Osteoartritis de la Rodilla , Algoritmos , Lógica Difusa , Humanos , Articulación de la Rodilla , Aprendizaje Automático , Osteoartritis de la Rodilla/diagnóstico por imagen
11.
Artículo en Inglés | MEDLINE | ID: mdl-36612771

RESUMEN

Modern lifestyles require new tools for determining a person's ability to return to daily activities after knee surgery. These quantitative instruments must feature high discrimination, be non-invasive, and be inexpensive. Machine learning is a revolutionary approach that has the potential to satisfy the aforementioned requirements and bridge the knowledge gap. The scope of this study is to summarize the results of a systematic literature review on the identification of gait-related changes and the determination of the functional recovery status of patients after knee surgery using advanced machine learning algorithms. The current systematic review was conducted using multiple databases in accordance with the PRISMA guidelines, including Scopus, PubMed, and Semantic Scholar. Six out of the 405 articles met our inclusion criteria and were directly related to the quantification of the recovery status using machine learning and gait data. The results were interpreted using appropriate metrics. The results demonstrated a recent increase in the use of sophisticated machine learning techniques that can provide robust decision-making support during personalized post-treatment interventions for knee-surgery patients.


Asunto(s)
Marcha , Articulación de la Rodilla , Humanos , Rodilla/cirugía , Aprendizaje Automático , Algoritmos
12.
Int J Med Inform ; 156: 104614, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662820

RESUMEN

OBJECTIVE: Feature selection (FS) is a crucial and at the same time challenging processing step that aims to reduce the dimensionality of complex classification or regression problems. Various techniques have been proposed in the literature to address this challenge with emphasis to medical applications. However, each one of the existing FS algorithms come with its own advantages and disadvantages introducing a certain level of bias. MATERIALS AND METHODS: To avoid bias and alleviate the defectiveness of single feature selection results, an ensemble FS methodology is proposed in this paper that aggregates the results of several FS algorithms (filter, wrapper and embedded ones). Fuzzy logic is employed to combine multiple feature importance scores thus leading to a more robust selection of informative features. The proposed fuzzy ensemble FS methodology was applied on the problem of knee osteoarthritis (KOA) prediction with special emphasis on the progression of joint space narrowing (JSN). The proposed FS methodology was integrated into an end-to-end machine learning pipeline and a thorough experimental evaluation was conducted using data from the Osteoarthritis Initiative (OAI) database. Several classifiers were investigated for their suitability in the task of JSN prediction and the best performing model was then post-hoc analyzed by using the SHAP method. RESULTS: The results showed that the proposed method presented a better and more stable performance in contrast to other competitive feature selection methods, leading to an average accuracy of 78.14% using XG Boost at 31 selected features. The post-hoc explainability highlighted the important features that contribute to the classification of patients with JSN progression. CONCLUSIONS: The proposed fuzzy feature selection approach improves the performance of the predictive models by selecting a small optimal subset of features compared to popular feature selection methods.


Asunto(s)
Osteoartritis de la Rodilla , Algoritmos , Lógica Difusa , Humanos , Aprendizaje Automático , Osteoartritis de la Rodilla/diagnóstico por imagen
13.
Healthcare (Basel) ; 9(3)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804560

RESUMEN

Knee osteoarthritis (KOA) is a multifactorial disease which is responsible for more than 80% of the osteoarthritis disease's total burden. KOA is heterogeneous in terms of rates of progression with several different phenotypes and a large number of risk factors, which often interact with each other. A number of modifiable and non-modifiable systemic and mechanical parameters along with comorbidities as well as pain-related factors contribute to the development of KOA. Although models exist to predict the onset of the disease or discriminate between asymptotic and OA patients, there are just a few studies in the recent literature that focused on the identification of risk factors associated with KOA progression. This paper contributes to the identification of risk factors for KOA progression via a robust feature selection (FS) methodology that overcomes two crucial challenges: (i) the observed high dimensionality and heterogeneity of the available data that are obtained from the Osteoarthritis Initiative (OAI) database and (ii) a severe class imbalance problem posed by the fact that the KOA progressors class is significantly smaller than the non-progressors' class. The proposed feature selection methodology relies on a combination of evolutionary algorithms and machine learning (ML) models, leading to the selection of a relatively small feature subset of 35 risk factors that generalizes well on the whole dataset (mean accuracy of 71.25%). We investigated the effectiveness of the proposed approach in a comparative analysis with well-known FS techniques with respect to metrics related to both prediction accuracy and generalization capability. The impact of the selected risk factors on the prediction output was further investigated using SHapley Additive exPlanations (SHAP). The proposed FS methodology may contribute to the development of new, efficient risk stratification strategies and identification of risk phenotypes of each KOA patient to enable appropriate interventions.

14.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807832

RESUMEN

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim's offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


Asunto(s)
Marcha , Caminata , Fenómenos Biomecánicos , Músculos
15.
Diagnostics (Basel) ; 11(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670414

RESUMEN

Osteoarthritis is a joint disease that commonly occurs in the knee (KOA). The continuous increase in medical data regarding KOA has triggered researchers to incorporate artificial intelligence analytics for KOA prognosis or treatment. In this study, two approaches are presented to predict the progression of knee joint space narrowing (JSN) in each knee and in both knees combined. A machine learning approach is proposed with the use of multidisciplinary data from the osteoarthritis initiative database. The proposed methodology employs: (i) A clustering process to identify groups of people with progressing and non-progressing JSN; (ii) a robust feature selection (FS) process consisting of filter, wrapper, and embedded techniques that identifies the most informative risk factors; (iii) a decision making process based on the evaluation and comparison of various classification algorithms towards the selection and development of the final predictive model for JSN; and (iv) post-hoc interpretation of the features' impact on the best performing model. The results showed that bounding the JSN progression of both knees can result to more robust prediction models with a higher accuracy (83.3%) and with fewer risk factors (29) compared to the right knee (77.7%, 88 risk factors) and the left knee (78.3%, 164 risk factors), separately.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32974307

RESUMEN

The anterior cruciate ligament (ACL) constitutes one of the most important stabilizing tissues of the knee joint whose rapture is very prevalent. ACL reconstruction (ACLR) from a graft is a surgery which yields the best outcome. Taking into account the complicated nature of this operation and the high cost of experiments, finite element (FE) simulations can become a valuable tool for evaluating the surgery in a pre-clinical setting. The present study summarizes, for the first time, the current advancement in ACLR in both clinical and computational level. It also emphasizes on the material modeling and properties of the most popular grafts as well as modeling of different surgery techniques. It can be concluded that more effort is needed to be put toward more realistic simulation of the surgery, including also the use of two bundles for graft representation, graft pretension and artificial grafts. Furthermore, muscles and synovial fluid need to be included, while patellofemoral joint is an important bone that is rarely used. More realistic models are also required for soft tissues, as most articles used isotropic linear elastic models and springs. In summary, accurate and realistic FE analysis in conjunction with multidisciplinary collaboration could contribute to ACLR improvement provided that several important aspects are carefully considered.

17.
Gait Posture ; 38(1): 62-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23164757

RESUMEN

The purpose of the study was to examine the effects of exercise-induced muscle damage on the biomechanics of the sit-to-stand transition (STST). Seventeen volunteers participated in an intense, eccentric based, muscle damage protocol of knee flexors and extensors via an isokinetic dynamometer. Kinematic and kinetic data were collected using a 10-camera optoelectronic system and a force plate 24h before and 48h after exercise. Statistical analysis showed significant differences in kinematic and kinetic parameters after exercise. Forty-eight hours after exercise, the strategy did change and the knee joint relative effort level increased significantly. Pelvic and hip kinematics, in conjunction with the knee extension joint moment, provided an efficient mechanism to support the participants' locomotor system during the STST. These results may be of great significance in designing supportive devices, as well as composing rehabilitation programs for young or elderly individuals, with various musculoskeletal pathologies.


Asunto(s)
Ejercicio Físico , Articulación de la Rodilla/fisiología , Movimiento/fisiología , Músculo Cuádriceps/lesiones , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Articulación de la Rodilla/fisiopatología , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Músculo Cuádriceps/fisiología , Músculo Cuádriceps/fisiopatología , Rango del Movimiento Articular/fisiología , Muslo , Adulto Joven
18.
J Appl Physiol (1985) ; 111(1): 68-74, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21474701

RESUMEN

The purpose of this study was to determine the effect of dynamometer and joint axis misalignment on measured isometric knee-extension moments using inverse dynamics based on the actual joint kinematic information derived from the real-time X-ray video and to compare the errors when the moments were calculated using measurements from external anatomical surface markers or obtained from the isokinetic dynamometer. Six healthy males participated in this study. They performed isometric contractions at 90° and 20° of knee flexion, gradually increasing to maximum effort. For the calculation of the actual knee-joint moment and the joint moment relative to the knee-joint center, determined using the external marker, two free body diagrams were used of the Cybex arm and the lower leg segment system. In the first free body diagram, the mean center of the circular profiles of the femoral epicondyles was used as the knee-joint center, whereas in the second diagram, the joint center was assumed to coincide with the external marker. Then, the calculated knee-joint moments were compared with those measured by the dynamometer. The results indicate that 1) the actual knee-joint moment was different from the dynamometer recorded moment (difference ranged between 1.9% and 4.3%) and the moment calculated using the skin marker (difference ranged between 2.5% and 3%), and 2) during isometric knee extension, the internal knee angle changed significantly from rest to the maximum contraction state by about 19°. Therefore, these differences cannot be neglected if the moment-knee-joint angle relationship or the muscle mechanical properties, such as length-tension relationship, need to be determined.


Asunto(s)
Contracción Isométrica , Articulación de la Rodilla/fisiología , Dinamómetro de Fuerza Muscular , Músculo Esquelético/fisiología , Adulto , Análisis de Varianza , Fenómenos Biomecánicos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Modelos Biológicos , Dinamómetro de Fuerza Muscular/normas , Músculo Esquelético/diagnóstico por imagen , Valor Predictivo de las Pruebas , Radiografía , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Rotación , Tendones/fisiología , Torque , Grabación en Video , Adulto Joven
19.
Eur J Appl Physiol ; 110(5): 977-88, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20668871

RESUMEN

The purpose of the present study was to examine the effects of muscle damage on walking biomechanics at different speeds. Seventeen young women completed a muscle damage protocol of 5 × 15 maximal eccentric actions of the knee extensors and flexors of both legs at 60°/s. Lower body kinematics and swing-phase kinetics were assessed on a horizontal treadmill pre- and 48 h post-muscle damaging exercise at four walking speeds. Evaluated muscle damage indices included isometric torque, delayed onset muscle soreness, and serum creatine kinase. All muscle damage indices changed significantly after exercise, indicating muscle injury. Kinematic results indicated that post-exercise knee joint was significantly more flexed (31-260%) during stance-phase and knee range of motion was reduced at certain phases of the gait cycle at all speeds. Walking post-exercise at the two lower speeds revealed a more extended knee joint (3.1-3.6%) during the swing-phase, but no differences were found between pre- and post-exercise conditions at the two higher speeds. As speed increased, maximum dorsiflexion angle during stance-phase significantly decreased pre-exercise (5.7-11.8%), but remained unaltered post-exercise across all speeds (p > 0.05). Moreover, post-exercise maximum hip extension decreased (3.6-18.8%), pelvic tilt increased (5.5-10.6%), and tempo-spatial differences were found across all speeds (p < 0.05). Limited effects of muscle damage were observed regarding swing-phase kinetics. In conclusion, walking biomechanics following muscle damage are affected differently at relatively higher walking speeds, especially with respect to knee and ankle joint motion. The importance of speed in evaluating walking biomechanics following muscle damage is highlighted.


Asunto(s)
Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Caminata/fisiología , Adulto , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Prueba de Esfuerzo , Femenino , Marcha/fisiología , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla/fisiología , Rango del Movimiento Articular/fisiología , Adulto Joven
20.
Eur J Appl Physiol ; 105(5): 809-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19125279

RESUMEN

The purpose of this study was to estimate and compare the moment arm length of the patellar tendon (d) during passive knee extension using three different reference landmarks; instant centre of rotation (ICR), tibiofemoral contact point (TFCP) and geometrical centre of the posterior femoral condyles (GCFC). Measurements were taken on the right leg on seven healthy males during passive knee rotation performed by the motor of a Cybex Norm isokinetic dynamometer. Moment arms lengths were obtained by analysing lateral X-ray images recorded using a GE FlexiView 8800 C-arm videofluoroscopy system. The d-knee joint angle relations with respect to GCFC and ICR were similar, with decreasing values from full knee extension (~5.8 cm for d (GCFC) and ~5.9 cm for d (ICR)) to 90 degrees of knee flexion (~4.8 cm for both d (GCFC) and d (ICR)). However, the d (TFCP)-knee joint angle relation had an ascending-descending shape, with the highest d (TFCP) value (~5 cm) at 60 degrees of knee flexion. There was no significant difference between the GCFC and ICR methods at any knee joint angle. In contrast, there were significant differences (P < 0.01) between d (ICR) and d (TFCP) at 0 degrees , 15 degrees , 30 degrees and 45 degrees of knee flexion and between d (GCFC) and d (TFCP) at 0 degrees , 15 degrees and 30 degrees of knee flexion (P < 0.01). This study shows that when using different knee joint rotation centre definitions, there are significant differences in the estimates of the patellar tendon moment arm length, especially in more extended knee joint positions. These differences can have serious implications for joint modelling and loading applications.


Asunto(s)
Ligamento Rotuliano/fisiología , Adulto , Humanos , Articulación de la Rodilla/fisiología , Masculino , Movimiento , Contracción Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...