Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
DNA Repair (Amst) ; 47: 21-29, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27720308

RESUMEN

Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.


Asunto(s)
ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Nucleosomas/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Bioensayo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN de Hongos/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genes Dev ; 28(21): 2394-406, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367035

RESUMEN

Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.


Asunto(s)
Repeticiones de Microsatélite/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Reparación del ADN/genética , Replicación del ADN/genética , Evolución Molecular , Conversión Génica , Inestabilidad Genómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Translocación Genética/genética
4.
Mol Cell ; 55(4): 615-25, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25066232

RESUMEN

Although repair of double-strand breaks (DSBs) by gene conversion is the most accurate way to repair such lesions, in budding yeast there is a 1,000-fold increase in accompanying mutations, including interchromosomal template switches (ICTS) involving highly mismatched (homeologous) ectopic sequences. Although such events are rare and appear at a rate of 2 × 10(-7) when template jumps occur between 71% identical sequences, they are surprisingly frequent (0.3% of all repair events) when the second template is identical to the first, revealing the remarkable instability of repair DNA synthesis. With homeologous donors, ICTS uses microhomologies as small as 2 bp. Cells lacking mismatch repair proteins Msh6 and Mlh1 form chimeric recombinants with two distinct patches of microhomology, implying that these proteins are crucial for strand discrimination of heteroduplex DNA formed during ICTS. We identify the chromatin remodeler Rdh54 as the first protein required for template switching that does not affect simple gene conversion.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromosomas Fúngicos , ADN de Hongos/genética , Conversión Génica/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Reparación de la Incompatibilidad de ADN/fisiología , ADN-Topoisomerasas/genética , ADN-Topoisomerasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Conversión Génica/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Genoma Fúngico , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
5.
Mol Cell ; 54(4): 691-7, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24856221

RESUMEN

In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins, whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3Δ cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.


Asunto(s)
Replicación del ADN , ADN Ribosómico/metabolismo , Histona Desacetilasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , Epigénesis Genética , Eliminación de Gen , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 41(22): 10371-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049076

RESUMEN

The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.


Asunto(s)
Daño del ADN , Genoma Fúngico , Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Proteínas del Grupo de Alta Movilidad/genética , Hidroxiurea/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
7.
EMBO J ; 31(4): 883-94, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22234185

RESUMEN

Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.


Asunto(s)
Replicación del ADN , Desoxirribonucleósidos/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Bromodesoxiuridina , Daño del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Hidroxiurea/farmacología , Inmunoprecipitación , Ribonucleótido Reductasas/metabolismo , Fase S , Saccharomyces cerevisiae/enzimología
8.
PLoS Genet ; 7(5): e1002061, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21573136

RESUMEN

The Saccharomyces cerevisiae Dun1 protein kinase is a downstream target of the conserved Mec1-Rad53 checkpoint pathway. Dun1 regulates dNTP pools during an unperturbed cell cycle and after DNA damage by modulating the activity of ribonucleotide reductase (RNR) by multiple mechanisms, including phosphorylation of RNR inhibitors Sml1 and Dif1. Dun1 also activates DNA-damage-inducible genes by inhibiting the Crt1 transcriptional repressor. Among the genes repressed by Crt1 are three out of four RNR genes: RNR2, RNR3, and RNR4. The fourth RNR gene, RNR1, is also DNA damage-inducible, but is not controlled by Crt1. It has been shown that the deletion of DUN1 is synthetic lethal with the deletion of IXR1, encoding an HMG-box-containing DNA binding protein, but the reason for this lethality is not known. Here we demonstrate that the dun1 ixr1 synthetic lethality is caused by an inadequate RNR activity. The deletion of IXR1 results in decreased dNTP levels due to a reduced RNR1 expression. The ixr1 single mutants compensate for the reduced Rnr1 levels by the Mec1-Rad53-Dun1-Crt1-dependent elevation of Rnr3 and Rnr4 levels and downregulation of Sml1 levels, explaining why DUN1 is indispensible in ixr1 mutants. The dun1 ixr1 synthetic lethality is rescued by an artificial elevation of the dNTP pools. We show that Ixr1 is phosphorylated at several residues and that Ser366, a residue important for the interaction of HMG boxes with DNA, is required for Ixr1 phosphorylation. Ixr1 interacts with DNA at multiple loci, including the RNR1 promoter. Ixr1 levels are decreased in Rad53-deficient cells, which are known to have excessive histone levels. A reduction of the histone gene dosage in the rad53 mutant restores Ixr1 levels. Our results demonstrate that Ixr1, but not Dun1, is required for the proper RNR1 expression both during an unperturbed cell cycle and after DNA damage.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN/efectos de los fármacos , Eliminación de Gen , Orden Génico , Histonas/metabolismo , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Quinolonas/farmacología , Ribonucleósido Difosfato Reductasa/metabolismo , Alineación de Secuencia , Transcripción Genética
9.
Mol Cell ; 42(1): 127-36, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21474074

RESUMEN

Telomere-associated position-effect variegation (TPEV) in budding yeast has been used as a model for understanding epigenetic inheritance and gene silencing. A widely used assay to identify mutants with improper TPEV employs the URA3 gene at the telomere of chromosome VII-L that can be counterselected with 5-fluoroorotic acid (5-FOA). 5-FOA resistance has been inferred to represent lack of transcription of URA3 and therefore to represent heterochromatin-induced gene silencing. For two genes implicated in telomere silencing, POL30 and DOT1, we show that the URA3 telomere reporter assay does not reflect their role in heterochromatin formation. Rather, an imbalance in ribonucleotide reductase (RNR), which is induced by 5-FOA, and the specific promoter of URA3 fused to ADH4 at telomere VII-L are jointly responsible for the variegated phenotype. We conclude that metabolic changes caused by the drug employed and certain mutants being studied are incompatible with the use of certain prototrophic markers for TPEV.


Asunto(s)
Silenciador del Gen , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Efectos de la Posición Cromosómica , Genes Fúngicos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Orótico/análogos & derivados , Ácido Orótico/metabolismo , Antígeno Nuclear de Célula en Proliferación , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nucleic Acids Res ; 38(4): 1195-203, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19965764

RESUMEN

MEC1, the essential yeast homolog of the human ATR/ATM genes, controls the S-phase checkpoint and prevents replication fork collapse at slow zones of DNA replication. The viability of hypomorphic mec1-21 is reduced in the rad52 mutant, defective in homologous recombination, suggesting that replication generates recombinogenic lesions. We previously observed a 6-, 10- and 30-fold higher rate of spontaneous sister chromatid exchange (SCE), heteroallelic recombination and translocations, respectively, in mec1-21 mutants compared to wild-type. Here we report that the hyper-recombination phenotype correlates with lower deoxyribonucleoside triphosphate (dNTP) levels, compared to wild-type. By introducing a dun1 mutation, thus eliminating inducible expression of ribonucleotide reductase in mec1-21, rates of spontaneous SCE increased 15-fold above wild-type. All the hyper-recombination phenotypes were reduced by SML1 deletions, which increase dNTP levels. Measurements of dNTP pools indicated that, compared to wild-type, there was a significant decrease in dNTP levels in mec1-21, dun1 and mec1-21 dun1, while the dNTP levels of mec1-21 sml1, mec1-21 dun1 sml1 and sml1 mutants were approximately 2-fold higher. Interestingly, higher dNTP levels in mec1-21 dun1 sml1 correlate with approximately 2-fold higher rate of spontaneous mutagenesis, compared to mec1-21 dun1. We suggest that higher dNTP levels in specific checkpoint mutants suppress the formation of recombinogenic lesions.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Mutagénesis , Mutación , Fase S/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas , Factor Trefoil-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...