Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Affect Disord ; 365: 285-292, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134155

RESUMEN

BACKGROUND: Major depressive disorder (MDD) affects multiple functional neural networks. Neuroimaging studies using resting-state functional connectivity (FC) have focused on the amygdala but did not assess changes in connectivity between the left and right amygdala. The current study aimed to examine the inter-hemispheric functional connectivity (homotopic FC, HoFC) between different amygdalar sub-regions in patients with MDD compared to healthy controls, and to examine whether amygdalar sub-regions' HoFC also predicts response to Serotonin Selective Reuptake Inhibitors (SSRIs). METHOD: Sixty-seven patients with MDD and 64 matched healthy controls were recruited. An MRI scan focusing on resting state fMRI and clinical and cognitive evaluations were performed. An atlas seed-based approach was used to identify the lateral and medial sub-regions of the amygdala. HoFC of these sub-regions was compared between groups and correlated with severity of depression, and emotional processing performance. Baseline HoFC levels were used to predict response to SSRIs after 2 months of treatment. RESULTS: Patients with MDD demonstrated decreased inter-hemispheric FC in the medial (F3,120 = 4.11, p = 0.008, η2 = 0.096) but not in the lateral (F3,119 = 0.29, p = 0.82, η2 = 0.008) amygdala compared with healthy controls. The inter-hemispheric FC of the medial sub-region correlated with symptoms severity (r = -0.33, p < 0.001) and emotional processing performance (r = 0.38, p < 0.001). Moreover, it predicted treatment response to SSRIs 65.4 % of the cases. LIMITATIONS: The current study did not address FC changes in MDD biotypes. In addition, structural connectivity was not examined. CONCLUSIONS: Using a unique perspective of the amygdalar distinct areas elucidated differential inter-hemispheric FC patterns in MDD patients, emphasizing the role of interhemispheric communication in depression.


Asunto(s)
Amígdala del Cerebelo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Inhibidores Selectivos de la Recaptación de Serotonina , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Masculino , Femenino , Adulto , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Persona de Mediana Edad , Biomarcadores , Estudios de Casos y Controles , Vías Nerviosas/fisiopatología , Emociones/fisiología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
2.
J Neurotrauma ; 41(7-8): 836-843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37937697

RESUMEN

Spinal cord injury (SCI) is a debilitating neurological condition that often leads to central neuropathic pain (CNP). As the fundamental mechanism of CNP is not fully established, its management is one of the most challenging problems among people with SCI. To shed more light on CNP mechanisms, the aim of this cross-sectional study was to compare the brain structure between individuals with SCI and CNP and those without CNP by examining the gray matter (GM) volume and the white matter (WM) integrity. Fifty-two individuals with SCI-28 with CNP and 24 without CNP-underwent a magnetic resonance imaging (MRI) session, including a T1-weighted scan for voxel-based morphometry, and a diffusion-weighted imaging (DWI) scan for WM integrity analysis, as measured by fractional anisotropy (FA) and mean diffusivity (MD). We found significantly higher GM volume in individuals with CNP compared with pain-free individuals in the right superior (p < 0.0014) and middle temporal gyri (p < 0.0001). Moreover, individuals with CNP exhibited higher WM integrity in the splenium of the corpus callosum (p < 0.0001) and in the posterior cingulum (p < 0.0001), compared with pain-free individuals. The results suggest that the existence of CNP following SCI is associated with GM and WM structural abnormalities in regions involved in pain intensification and spread, and which may reflect maladaptive neural plasticity in CNP.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Sustancia Blanca , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Transversales , Imagen de Difusión Tensora/métodos , Encéfalo/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología , Neuralgia/diagnóstico por imagen , Neuralgia/etiología
3.
Front Aging Neurosci ; 15: 1067196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819726

RESUMEN

Introduction: Recently, interest has emerged in subjective cognitive decline (SCD) as a potential precursor to Alzheimer's disease (AD) dementia. Whether individuals with SCD harbor brain alterations in midlife, when AD-related pathology begins, is yet to be elucidated. Furthermore, the role of apolipoprotein ε4 (APOE ε4) allele, a robust AD risk factor, in the relationship between SCD and brain alterations is unknown. We examined whether APOE genotype modulates the association of SCD with brain measures in individuals at high AD risk. Methods: Middle-aged adults with parental history of AD dementia underwent magnetic resonance imaging (MRI) and the Memory Functioning Questionnaire. Regression analysis tested the extent to which SCD was associated with activation during an functional MRI (fMRI) working-memory task, and white-matter microstructure. APOE ε4 genotype was tested as a moderator. Results: Among APOE ε4 carriers, but not among non-carriers, SCD was associated with higher activation in the anterior cingulate (p = 0.003), inferior, middle, and superior frontal cortices (p = 0.041, p = 0.048, p = 0.037, respectively); and with lower fractional anisotropy in the uncinate fasciculus (p = 0.002), adjusting for age, sex, and education. Conclusion: In middle aged, cognitively normal individuals at high AD risk, higher SCD was associated with greater brain alterations possibly reflecting incipient AD pathology. When accompanied by a family history of AD and an APOE ε4 allele, SCD may have important clinical value, allowing a window for early intervention and for participants' stratification in AD prevention clinical trials.

4.
Cereb Cortex ; 33(4): 1207-1216, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353131

RESUMEN

INTRODUCTION: Homotopic functional connectivity (HoFC), the synchrony in activity patterns between homologous brain regions, is a fundamental characteristic of resting-state functional connectivity (RsFC). METHODS: We examined the difference in HoFC, computed as the correlation between atlas-based regions and their counterpart on the opposite hemisphere, in 16 moderate-severe traumatic brain injury patients (msTBI) and 36 healthy controls. Regions of decreased HoFC in msTBI patients were further used as seeds for examining differences between groups in correlations with other brain regions. Finally, we computed logistic regression models of regional HoFC and fractional anisotropy (FA) of the corpus callosum (CC). RESULTS: TBI patients exhibited decreased HoFC in the middle and posterior cingulate cortex, thalamus, superior temporal pole, and cerebellum III. Furthermore, decreased RsFC was found between left cerebellum III and right parahippocampal cortex and vermis, between superior temporal pole and left caudate and medial left and right frontal orbital gyri. Thalamic HoFC and FA of the CC discriminate patients as msTBI with a high accuracy of 96%. CONCLUSION: TBI is associated with regionally decreased HoFC. Moreover, a multimodality model of interhemispheric connectivity allowed for a high degree of accuracy in disease discrimination and enabled a deeper understanding of TBI effects on brain interhemispheric reorganization post-TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Cuerpo Calloso , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Corteza Cerebral
5.
Hum Brain Mapp ; 43(9): 2861-2868, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35274794

RESUMEN

The laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research on the cortical layers is done with the aid of ex vivo histology, there have been recent attempts to use magnetic resonance imaging (MRI) with potential in vivo applications. However, the high-resolution MRI technology and protocols required for such studies are neither common nor practical. In this article, we present a clinically feasible method for assessing the laminar properties of the human cortex using standard pulse sequence available on any common MRI scanner. Using a series of low-resolution inversion recovery (IR) MRI scans allows us to calculate multiple T1 relaxation time constants for each voxel. Based on the whole-brain T1 -distribution, we identify six different gray matter T1 populations and their variation across the cortex. Based on this, we show age-related differences in these population and demonstrate that this method is able to capture the difference in laminar composition across varying brain areas. We also provide comparison to ex vivo high-resolution MRI scans. We show that this method is feasible for the estimation of layer variability across large population cohorts, which can lead to research into the links between the cortical layers and function, behavior and pathologies that was heretofore unexplorable.


Asunto(s)
Corteza Cerebral , Sustancia Gris , Encéfalo , Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Proyectos de Investigación
6.
Artículo en Inglés | MEDLINE | ID: mdl-34886482

RESUMEN

BACKGROUND: Normal aging is associated with balance and working memory decline. From a neurobiological standpoint, changes in cerebellar functional plasticity may mediate the decline in balance and working memory for older adults. Mounting evidence suggests that physical activity is beneficial for decreasing aging effects. Previous studies have focused on land-based physical activity and research concerning the aquatic environment is scarce. This study investigated the effectiveness of Ai-Chi on balance abilities and cerebral activation during a high working memory load task among community-dwelling older people. METHODS: A total of 19 people aged 65-86 years were allocated to receive Ai-Chi practice (n = 6), structured on-land Ai-Chi practice (n = 7) or guided-imagery of Ai-Chi practice (n = 6) for a bi-weekly, 30-min exercise session for 12 weeks. Balance was measured by the Tinetti balance sub-test and working memory was measured by the N-back test during functional-MRI scan. RESULTS: The Ai-Chi practice group presented a significant change in balance between pre and post intervention (balance t = -4.8, p < 0.01). In the whole-brain analysis, during high working memory load task, the Ai-Chi practice group presented a decrease in left cerebellar activation. Region of interest analyses yielded similar results by which pre-cerebellar activation was higher than post-intervention (t = 2.77, p < 0.05). CONCLUSIONS: Ai-Chi is an available, non-invasive intervention method that may serve as a tool to improve cerebellar activation that in turn might improve balance. In addition, our findings may provide new insights into the neuronal mechanisms that underlie both motor and cognitive abilities.


Asunto(s)
Memoria a Corto Plazo , Equilibrio Postural , Anciano , Anciano de 80 o más Años , Envejecimiento , Humanos , Vida Independiente , Proyectos Piloto
7.
Hum Brain Mapp ; 42(12): 3983-3992, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34021674

RESUMEN

What goes wrong in a schizophrenia patient's brain that makes it so different from a healthy brain? In this study, we tested the hypothesis that the abnormal brain activity in schizophrenia is tightly related to alterations in brain connectivity. Using functional magnetic resonance imaging (fMRI), we demonstrated that both resting-state functional connectivity and brain activity during the well-validated N-back task differed significantly between schizophrenia patients and healthy controls. Nevertheless, using a machine-learning approach we were able to use resting-state functional connectivity measures extracted from healthy controls to accurately predict individual variability in the task-evoked brain activation in the schizophrenia patients. The predictions were highly accurate, sensitive, and specific, offering novel insights regarding the strong coupling between brain connectivity and activity in schizophrenia. On a practical perspective, these findings may allow to generate task activity maps for clinical populations without the need to actually perform any tasks, thereby reducing patients inconvenience while saving time and money.


Asunto(s)
Variación Biológica Individual , Corteza Cerebral/fisiopatología , Conectoma , Imagen por Resonancia Magnética , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Adulto Joven
8.
NMR Biomed ; 34(8): e4537, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993573

RESUMEN

MRI's transverse relaxation time (T2 ) is sensitive to tissues' composition and pathological state. While variations in T2 values can be used as clinical biomarkers, it is challenging to quantify this parameter in vivo due to the complexity of the MRI signal model, differences in protocol implementations, and hardware imperfections. Herein, we provide a detailed analysis of the echo modulation curve (EMC) platform, offering accurate and reproducible mapping of T2 values, from 2D multi-slice multi-echo spin-echo (MESE) protocols. Computer simulations of the full Bloch equations are used to generate an advanced signal model, which accounts for stimulated echoes and transmit field (B1+ ) inhomogeneities. In addition to quantifying T2 values, the EMC platform also provides proton density (PD) maps, and fat-water fraction maps. The algorithm's accuracy, reproducibility, and insensitivity to T1 values are validated on a phantom constructed by the National Institute of Standards and Technology and on in vivo human brains. EMC-derived T2 maps show excellent agreement with ground truth values for both in vitro and in vivo models. Quantitative values are accurate and stable across scan settings and for the physiological range of T2 values, while showing robustness to main field (B0 ) inhomogeneities, to variations in T1 relaxation time, and to magnetization transfer. Extension of the algorithm to two-component fitting yields accurate fat and water T2 maps along with their relative fractions, similar to a reference three-point Dixon technique. Overall, the EMC platform allows to generate accurate and stable T2 maps, with a full brain coverage using a standard MESE protocol and at feasible scan times. The utility of EMC-based T2 maps was demonstrated on several clinical applications, showing robustness to variations in other magnetic properties. The algorithm is available online as a full stand-alone package, including an intuitive graphical user interface.


Asunto(s)
Imagen por Resonancia Magnética , Algoritmos , Simulación por Computador , Voluntarios Sanos , Humanos , Lípidos/química , Fantasmas de Imagen , Reproducibilidad de los Resultados , Factores de Tiempo , Agua
9.
Brain Lang ; 216: 104931, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677174

RESUMEN

Second language (L2) learners differ greatly in language proficiency, which is partially explained by variability in native language (L1) skills. The present fMRI study explored the neural underpinnings of the L1-L2 link. Twenty L2 learners completed a tip-of-the-tongue (TOT) task that required retrieving words in L1. Low-proficiency L2 learners showed greater functional connectivity for correct and TOT responses between the left inferior frontal gyrus and right-sided homologues of the temporoparietal regions that support phonological processing (e.g., supramarginal gyrus), possibly reflecting difficulty with phonological retrieval. High-proficiency L2 learners showed greater connectivity for erroneous responses (TOT in particular) between the left inferior frontal gyrus and regions of left medial temporal lobe (e.g., hippocampus), associated with implicit learning processes. The difference between low- and high-proficiency L2 learners in functional connectivity, which is evident even during L1 processing, may affect L2 learning processes and outcomes.


Asunto(s)
Multilingüismo , Humanos , Lenguaje , Pruebas del Lenguaje , Aprendizaje , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...