Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511873

RESUMEN

ALI is a grave medical ailment that manifests as abrupt inflammation of the lungs and diminished oxygen levels. It poses a considerable challenge to the medical fraternity, with elevated rates of morbidity and mortality. Our research endeavors to investigate the potential of hibifolin, a flavonoid glucuronide, imbued with potent antioxidant properties, and its molecular mechanism to combat LPS-induced ALI in mice. The study utilized ICR mice to create an ALI model induced by LPS. Prior to LPS administration, hibifolin was given at 10, 30, or 50 mg/kg, or dexamethasone was given at 1 mg/kg to assess its preventative impact. Changes in lung tissue, pulmonary edema, and lipid peroxidation were analyzed using H&E stain assay, lung wet/dry ratio assay, and MDA formation assay, respectively. Activity assay kits were used to measure MPO activity and antioxidative enzymes (SOD, CAT, GPx) activity in the lungs. Western blot assay was used to determine the phosphorylation of Nrf-2 and AMPK2 in the lungs. Hibifolin demonstrated a concentration-dependent improvement in LPS-induced histopathologic pulmonary changes. This treatment notably mitigated pulmonary edema, lipid peroxidation, and MPO activity in ALI mice. Additionally, hibifolin successfully restored antioxidative enzyme activity in the lungs of ALI mice. Moreover, hibifolin effectively promoted Nrf-2 phosphorylation and reinstated AMPK2 phosphorylation in the lungs of ALI mice. The results indicate that hibifolin could effectively alleviate the pathophysiological impact of LPS-induced ALI. This is likely due to its antioxidative properties, which help to restore antioxidative enzyme activity and activate the AMPK2/Nrf2 pathway. These findings are valuable in terms of enhancing our knowledge of ALI treatment and pave the way for further investigation into hibifolin as a potential therapeutic option for lung injuries.

2.
Environ Toxicol ; 39(5): 2927-2936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38303669

RESUMEN

Macrophages play an important role in defending the body against invading pathogens. In the face of pathogens, macrophages become activated and release toxic materials that disrupt the pathogens. Macrophage overactivation can lead to severe illness and inflammation. Wogonin has several therapeutic effects, including anti-inflammatory, anticancer, antioxidant, and neuroprotective effects. No studies have investigated the cytotoxic effects of wogonin at concentrations of more than 0.1 mM in RAW264.7 cells. In this study, RAW 264.7 cells were treated with wogonin, which, at concentrations of more than 0.1 mM, had cytotoxic and genotoxic effects in the RAW264.7 cells, leading to apoptosis and necrosis. Further, wogonin at concentrations of more than 0.1 mM induced caspase-3, caspase-8, and caspase-9 activation and mitochondrial dysfunction and death receptor expression. These results suggest that wogonin induces apoptosis through upstream intrinsic and extrinsic pathways by exhibiting cytotoxic and genotoxic effects.


Asunto(s)
Apoptosis , Flavanonas , Flavanonas/farmacología , Macrófagos , Daño del ADN
3.
Environ Toxicol ; 39(5): 2970-2979, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314619

RESUMEN

Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.


Asunto(s)
Ciclizina , Enfermedades Mitocondriales , Humanos , Ciclizina/metabolismo , Ciclizina/farmacología , Citocromos c/metabolismo , Mitocondrias/metabolismo , Apoptosis , Caspasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Macrófagos , Necrosis/metabolismo , Enfermedades Mitocondriales/metabolismo
4.
Environ Toxicol ; 38(12): 2819-2825, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37551787

RESUMEN

Cyclizine exhibits sedation and treatment of nausea, vomiting, and motion sickness due to antihistaminic and antimuscarinic effects. Cyclizine has the potential for abuse due to the hallucinogenic and euphoric effect. The response of overdose and illegal abuse of cyclizine includes confusion, tremors, chest pain, ataxia, seizures, and lead to suicide. Macrophage plays the important role in the innate immunity. However, over activation of macrophages results in pro-inflammatory responses in peripheral tissues. In the present study, cyclizine was found to enhanced the generation of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. We further found that secretion of nitrogen oxide (NO) induced by cyclizine via expression of inducible nitric oxide synthases (iNOS). Cyclizine exhibited parallel stimulation of phosphorylation of nuclear factor-κB (NFκB) p65, and its up-stream factor Akt. These results indicated that the expression of pro-inflammatory cytokines, pro-inflammatory mediators, and adhesion molecules would be induced by cyclizine via activation of Akt-NFκB pathway in macrophages.


Asunto(s)
FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Humanos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ciclizina/metabolismo , Ciclizina/farmacología , Antiinflamatorios/farmacología , Macrófagos , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
5.
Oxid Med Cell Longev ; 2021: 9314342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336119

RESUMEN

1-Nitropyrene (1-NP), one of the most abundant nitropolycyclic aromatic hydrocarbons (nitro-PAHs), is generated from the incomplete combustion of carbonaceous organic compounds. 1-NP is a specific marker of diesel exhaust and is an environmental pollutant and a probable carcinogen. Macrophages participate in immune defense against the invasive pathogens in heart, lung, and kidney infection diseases. However, no evidence has indicated that 1-NP induces apoptosis in macrophages. In the present study, 1-NP was found to induce concentration-dependent changes in various cellular functions of RAW264.7 macrophages including cell viability reduction; apoptosis generation; mitochondrial dysfunction; apoptosis-inducing factor (AIF) nuclear translocation; intracellular ROS generation; activation of the AMPK/Nrf-2/HO-1 pathway; changes in the expression of BCL-2 family proteins; and depletion of antioxidative enzymes (AOE), such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) These results indicate that 1-NP induced apoptosis in macrophages through AIF nuclear translocation and ROS generation due to mitochondrial dysfunction and to the depletion of AOE from the activation of the AMPK/Nrf-2/HO-1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Apoptosis/fisiología , Macrófagos/metabolismo , Pirenos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Humanos
6.
Ecotoxicol Environ Saf ; 213: 112062, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618169

RESUMEN

Genotoxic stress from environmental pollutants plays a critical role in cytotoxicity. The most abundant nitro-polycyclic aromatic hydrocarbon in environmental pollutants, 1-nitropyrene (1-NP), is generated during fossil fuel, diesel, and biomass combustion under sunlight. Macrophages, the key regulators of the innate immune system, provide the first line of defense against pathogens. The toxic effects of 1-NP on macrophages remain unclear. Through a lactate dehydrogenase assay, we measured the cytotoxicity induced by 1-NP. Our results revealed that 1-NP induced genotoxicity also named DNA damage, including micronucleus formation and DNA strand breaks, in a concentration-dependent manner. Furthermore, 1-NP induced p53 phosphorylation and nuclear accumulation; mitochondrial cytochrome c release; caspase-3 and -9 activation and cleavage; and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage in a concentration-dependent manner. Pretreatment with the PARP inhibitor, 3-aminobenzamide, significantly reduced cytotoxicity, genotoxicity, and PARP-1 cleavage induced by 1-NP. Pretreatment with the caspase-3 inhibitor, z-DEVD-fmk, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, and caspase 3 activation induced by 1-NP. Pretreatment with the p53 inhibitor, pifithrin-α, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, caspase 3 activation, and p53 phosphorylation induced by 1-NP. We propose that cytotoxicity and genotoxicity induced by 1-NP by PARP-1 cleavage via caspase-3 and -9 activation through cytochrome c release from mitochondria and its upstream p53-dependent pathway in macrophages.


Asunto(s)
Caspasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Pirenos/toxicidad , Apoptosis/efectos de los fármacos , Caspasa 9/metabolismo , Citocromos c/metabolismo , Daño del ADN , Humanos , Macrófagos/metabolismo , Mitocondrias/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA