Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630846

RESUMEN

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Asunto(s)
COVID-19 , Humanos , Anciano , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , SARS-CoV-2 , Estudios Prospectivos , Multiómica , Quimiocinas
2.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405760

RESUMEN

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

3.
Nat Commun ; 15(1): 92, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168095

RESUMEN

Antimicrobial resistant lower respiratory tract infections are an increasing public health threat and an important cause of global mortality. The lung microbiome can influence susceptibility of respiratory tract infections and represents an important reservoir for exchange of antimicrobial resistance genes. Studies of the gut microbiome have found an association between age and increasing antimicrobial resistance gene burden, however, corollary studies in the lung microbiome remain absent. We performed an observational study of children and adults with acute respiratory failure admitted to the intensive care unit. From tracheal aspirate RNA sequencing data, we evaluated age-related differences in detectable antimicrobial resistance gene expression in the lung microbiome. Using a multivariable logistic regression model, we find that detection of antimicrobial resistance gene expression was significantly higher in adults compared with children after adjusting for demographic and clinical characteristics. This association remained significant after additionally adjusting for lung bacterial microbiome characteristics, and when modeling age as a continuous variable. The proportion of adults expressing beta-lactam, aminoglycoside, and tetracycline antimicrobial resistance genes was higher compared to children. Together, these findings shape our understanding of the lung resistome in critically ill patients across the lifespan, which may have implications for clinical management and global public health.


Asunto(s)
Microbiota , Infecciones del Sistema Respiratorio , Adulto , Niño , Humanos , Enfermedad Crítica , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Microbiota/genética , Pulmón , Farmacorresistencia Microbiana/genética , Infecciones del Sistema Respiratorio/tratamiento farmacológico
4.
Res Sq ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38196658

RESUMEN

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant (SOT) recipients, who have atypical but poorly characterized immune responses to SARS-CoV-2 infection. We sought to understand and the host immunologic and microbial features of COVID-19 in SOT recipients by leveraging a prospective multicenter cohort of 1164 hospitalized patients. Using multi-omic immuoprofiling, we studied 86 SOT recipients in this cohort, who were age- and sex-matched 2:1 with 172 non-SOT controls. PBMC and nasal transcriptional profiling unexpectedly demonstrated upregulation of innate immune pathways related to interferon (IFN) and Toll-like receptor signaling, and complement activation, in SOT recipients. Longitudinal analyses across the first 30-days post-hospitalization demonstrated persistent upregulation of these innate immunity pathways in SOT recipients. The levels of several proinflammatory serum chemokines, such as CX3CL1 and KITLG, were also higher in SOT recipients at the time of hospitalization, although IFN-gamma levels were lower. We observed differential dynamics of CXCL11, which remained persistently elevated in SOT recipients over the course of hospitalization. Nasal microbiome alpha diversity was higher in SOT recipients versus controls, but no differences in taxonomic abundance beyond SARS-CoV-2 were observed. SOT recipients had higher nasal SARS-CoV-2 viral loads and impaired viral clearance compared to controls. Antibody analysis demonstrated lower anti-SARS-CoV-2 spike IgG levels in SOT recipients upon hospitalization, but no distinctions over time compared to controls. Mass cytometry demonstrated marked differences in blood immune cell populations, with SOT recipients exhibiting decreased plasmablasts and transitional B cells, and increased senescent T cells. Severe disease in SOT recipients was characterized by a less robust induction of inflammatory chemokines, such as IL-6 and CCL7, and a more subtle proinflammatory transcriptional response in the blood and airway. Together, our study reveals distinct immune features and altered viral dynamics in SOT recipients compared to non-SOT controls. We unexpectedly find that SOT recipients exhibit an augmented, predominantly innate immune response in both the blood and upper respiratory tract that remains relatively stable across disease severity, in contrast to non-SOT controls. These findings may relate to the paradoxical observation that SOT recipients have similar COVID-19 mortality rates versus the general population, despite being more susceptible to SARS-CoV-2 infection, remaining infectious longer, and having higher rates of hospitalization. In summary, we find that COVID-19 in SOT recipients is characterized by a biologically distinct immune state, suggesting the potential for unique prognostic biomarkers and therapeutic approaches in this vulnerable population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...