Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunogenetics ; 76(4): 261-270, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922357

RESUMEN

Dog leukocyte antigen (DLA) polymorphisms have been found to be associated with inter-individual variations in the risk, susceptibility, and severity of immune-related phenomena. While DLA class II genes have been extensively studied, less research has been performed on the polymorphisms of DLA class I genes, especially in beagle dogs commonly used as laboratory animals for safety evaluations in drug development. We genotyped four DLA class I genes and four DLA class II genes by locus-specific Sanger sequencing using 93 laboratory beagle dogs derived from two different strains: TOYO and Marshall. The results showed that, for DLA class I genes, 11, 4, 1, and 2 alleles, including a novel allele, were detected in DLA-88, DLA-12/88L, DLA-64, and DLA-79, while, for DLA class II genes, 1, 10, 6, and 7 alleles were detected in DLA-DRA, DLA-DRB1, DLA-DQA1, and DLA-DQB1, respectively. It was estimated that there were 14 DLA haplotypes, six of which had a frequency of ≥ 5%. Furthermore, when comparing the DLA diversity between TOYO and Marshall strains, the most common alleles and haplotypes differed between them. This is the first study to genotype all DLA loci and determine DLA haplotypes including all DLA class I and class II genes in dogs. Integrating information on the DLA diversity of laboratory beagle dogs should reinforce their benefit as an animal model for understanding various diseases associated with a specific DLA type.


Asunto(s)
Perros , Genes MHC Clase II , Genes MHC Clase I , Genotipo , Modelos Animales , Animales , Perros/genética , Variación Genética , Genes MHC Clase I/genética , Genes MHC Clase II/genética , Haplotipos , Homocigoto , Especificidad de la Especie
2.
J Toxicol Sci ; 49(4): 163-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556353

RESUMEN

Mas-related G-protein-coupled receptor X2 (MRGPRX2), expressed on mast cells, is associated with drug-induced pseudo-allergic reactions. Although it is well known that there are differences of sensitivity between species in the pseudo-allergic reactions, no platform for evaluating a human risk of the pseudo-allergic reactions observed in nonclinical studies has been established. Valemetostat tosylate, developed as an anti-cancer drug, induced histamine release in a nonclinical study with dogs. The purpose of the current study was to identify the mechanism and assess the human risk of valemetostat-tosylate-induced histamine release using dog and human MRGPRX2-expressing cells. In an experiment with human or dog MRGPRX2-expressing cells, valemetostat tosylate caused activation of human and dog MRGPRX2. Importantly, the EC50 for dog MRGPRX2 was consistent with the Cmax value at which histamine release was observed in dogs. Furthermore, the EC50 for human MRGPRX2 was ca. 27-fold higher than that for dog MRGPRX2, indicating a species difference in histamine-releasing activity. In a clinical trial, histamine release was not observed in patients receiving valemetostat tosylate. In conclusion, an in vitro assay using human and animal MRGPRX2-expressing cells would be an effective platform to investigate the mechanism and predict the human risk of histamine release observed in nonclinical studies.


Asunto(s)
Anafilaxia , Liberación de Histamina , Humanos , Animales , Perros , Anafilaxia/inducido químicamente , Receptores Acoplados a Proteínas G/genética , Mastocitos , Proteínas del Tejido Nervioso/genética , Receptores de Neuropéptido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...