Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 98(6): 353-360, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38267054

RESUMEN

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.


Asunto(s)
Chlorophyta , Genoma Mitocondrial , Microalgas , ADN de Cloroplastos/genética , Mitocondrias/genética , Cloroplastos/genética , Chlorophyta/genética , Agua Dulce , Filogenia , ADN Mitocondrial/genética
2.
PNAS Nexus ; 2(2): pgad002, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36845349

RESUMEN

During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that ENHANCER OF SHOOT REGENERATION 1 and CUP-SHAPED COTYLEDON 2 play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in hda19. Transient ESR1 or CUC2 overexpression impaired shoot regeneration, as observed in hda19. Therefore, HDA19 mediates direct histone deacetylation of CUC2 and ESR1 loci to prevent their overexpression at the early stages of shoot regeneration.

3.
Commun Biol ; 6(1): 89, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690657

RESUMEN

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Asunto(s)
Chlorophyta , Genoma , Filogenia , Chlorophyta/genética , Genómica , Agua Dulce
4.
Nat Commun ; 9(1): 5285, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538237

RESUMEN

High levels of boron (B) induce DNA double-strand breaks (DSBs) in eukaryotes, including plants. Here we show a molecular pathway of high B-induced DSBs by characterizing Arabidopsis thaliana hypersensitive to excess boron mutants. Molecular analysis of the mutants revealed that degradation of a SWItch/Sucrose Non-Fermentable subunit, BRAHMA (BRM), by a 26S proteasome (26SP) with specific subunits is a key process for ameliorating high-B-induced DSBs. We also found that high-B treatment induces histone hyperacetylation, which increases susceptibility to DSBs. BRM binds to acetylated histone residues and opens chromatin. Accordingly, we propose that the 26SP limits chromatin opening by BRM in conjunction with histone hyperacetylation to maintain chromatin stability and avoid DSB formation under high-B conditions. Interestingly, a positive correlation between the extent of histone acetylation and DSB formation is evident in human cultured cells, suggesting that the mechanism of DSB induction is also valid in animals.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boro/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Proteolisis
5.
Plant Biotechnol (Tokyo) ; 33(4): 235-243, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31367181

RESUMEN

Identification of the factors involved in the regulation of senescence and the analysis of their function are important for both a biological understanding of the senescence mechanism and the improvement of agricultural productivity. In this study, we identified an ERF gene termed "ERF gene conferring Postharvest longevity Improvement 1" (EPI1) as a possible regulator of senescence in Arabidopsis. We found that EPI1 possesses transcriptional repression activity and that the transgenic plants overexpressing EPI1 and expressing its chimeric repressor, EPI1-SRDX, commonly suppressed the darkness-induced senescence in their excised aerial parts. These transgenic plants additionally maintained a high level of chlorophyll, even after the methyl jasmonate (MeJA) treatment, which stimulated senescence in the dark. In addition, we found that senescence-induced and -reduced genes are down- and upregulated, respectively, in the MeJA-treated transgenic plants under darkness. Our results suggest that EPI1 functions as a negative regulator of the dark-induced and JA-stimulated senescence.

6.
Biotechnol Lett ; 34(4): 763-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22160296

RESUMEN

Ethylene-responsive transcription factor (ERF) family genes, which are involved in regulation of metabolic pathways and/or are useful for metabolic engineering, were investigated in the cultured cells of Arabidopsis thaliana. The pectin content in the gelatinous precipitates after the ethanol precipitation of extracts derived from calli of a transgenic cell line, A17, overexpressing an ERF gene (At1g44830), increased in comparison with the control. Expression of genes involved in pectin biosynthesis was up-regulated in the A17 calli. Overexpression of the ERF gene coordinately activates the pectin biosynthetic pathway genes and increases the content of pectin. These results therefore will be useful as a genetic resource for engineering pectin biosynthesis in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/biosíntesis , Expresión Génica , Pectinas/biosíntesis , Proteínas de Plantas/biosíntesis , Vías Biosintéticas/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...